File size: 13,706 Bytes
68ddf34 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7823db8c4670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7823db8c4700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7823db8c4790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7823db8c4820>", "_build": "<function ActorCriticPolicy._build at 0x7823db8c48b0>", "forward": "<function ActorCriticPolicy.forward at 0x7823db8c4940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7823db8c49d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7823db8c4a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7823db8c4af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7823db8c4b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7823db8c4c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7823db8c4ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7823db872680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733588936148145459, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADz3zyPun+6P2I+vHIZFrwCley6iisDPQAAgD8AAAAAmlraPAUdmbugi3A89cKcPMPWA73ekYQ9AACAPwAAgD8znkC9ro+Hun6ga7iKJK42hcgXu1oFgTcAAIA/AACAPzNbmrziNY0/o7KJvfmf5L6viGW9SvqBPQAAAAAAAAAAmoBbvYjrgz3ZeKi9Os6AvnIJ173+qFu9AAAAAAAAAABmu0A9EAS0P0+Lvj5sOSe+TP1qPYZyHz4AAAAAAAAAAK38RD4M00I/qmGMvlJys756V/W8EyeavQAAAAAAAAAAAHw/PSOacz0youE8WnpVvgWgmzyRH7M8AAAAAAAAAABNAYS9MHS4PuVVsb1+V4S+DBi1vZjdOD0AAAAAAAAAAJoyBT3hRKm6dRIPObp/V7Z7J/S5/cwiuAAAgD8AAIA/5mvqPZetFj/iHxC+QMySvtpgVD1Cwqq9AAAAAAAAAABmesC8WRYFPxmWo7zBxpO+OAn7vPLWTb0AAAAAAAAAADOexbyYiBA/dABGPi0/nL6q53U9YDnNOgAAAAAAAAAAsxlFPSkkd7pkbYe1E5QAsRQNMjtqoLo0AACAPwAAgD/NVCu9ZB6rP26nj77t1NC+dYcFPPi+gr0AAAAAAAAAAJq+iz3gCbk/FYk4Pwa0hj0RVGS8/HUAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2HMDOkcjuMAWyUS/2MAXSUR0CQ/RDEm6XjdX2UKGgGR0BxxnuTibUgaAdNDwFoCEdAkP2t9tuUEHV9lChoBkdAcQcCA+Y+jmgHTREBaAhHQJD92HtWuHN1fZQoaAZHQHDWRk7OmixoB00dAWgIR0CQ/idkauOkdX2UKGgGR0Bxs3/EOy3TaAdNRgFoCEdAkQCwsbvPT3V9lChoBkdAcuv/0NBnjGgHTQ4BaAhHQJEBJW+49X91fZQoaAZHQHMLQFgUlAxoB007AWgIR0CRAeLHuJDWdX2UKGgGR0ByABXFLnLaaAdNHgFoCEdAkQLKTKT0QXV9lChoBkdAcEkxjJ+2E2gHTRgBaAhHQJEDSpaRp111fZQoaAZHQHHZGseXAuZoB00hAWgIR0CRA3euFHrhdX2UKGgGR0BvVHvF3pwCaAdNDQFoCEdAkQQ8nNPgvXV9lChoBkdAc1UbExZdOmgHTQgBaAhHQJEEgEaESM91fZQoaAZHQHJAcI7eVLVoB0v9aAhHQJEElc6eXiR1fZQoaAZHQHIvnEdeY2NoB00dAWgIR0CRBn+6y0KJdX2UKGgGR0ByXuNjslcAaAdL9GgIR0CRBog3cYZVdX2UKGgGR0Bv5cuL74zraAdL/mgIR0CRB16yjYZmdX2UKGgGR0Bw7Tgk1MufaAdNMQFoCEdAkQgla8pTdnV9lChoBkdAcBFsvZh8Y2gHTR0BaAhHQJEI502cawV1fZQoaAZHQHKEKQaJhv1oB008AWgIR0CRCco6CDmKdX2UKGgGR0Bwk6gJ1JUYaAdNAwFoCEdAkQxH1e0G/3V9lChoBkdAcR2qynk1dmgHS/ZoCEdAkQyMsUZeiXV9lChoBkdAb8J/2Cdz4mgHTVMBaAhHQJENPxXnyNJ1fZQoaAZHQGvDFjEvTPVoB00FAWgIR0CRDgMOPNmldX2UKGgGR0Bx4UINVinYaAdNSgFoCEdAkQ41ev6j33V9lChoBkdAclSNWEK3NWgHTSgBaAhHQJEOZ0ZFXq91fZQoaAZHQG1gMA/9pAVoB00YAWgIR0CRDxNet0V8dX2UKGgGR0BxNLhqCYkWaAdNdgFoCEdAkQ8eWWyC4HV9lChoBkdAcKx9+w1R+GgHTQEBaAhHQJEQhDG96C11fZQoaAZHQG2wqRuCPIZoB01FAWgIR0CRENr30wrUdX2UKGgGR0BuIJMxoIv8aAdNJgFoCEdAkRHRY/3WWnV9lChoBkdAcsennuAqeGgHS/toCEdAkRKQGbCrLnV9lChoBkdAbUFfuTibUmgHTRQBaAhHQJESv/Lkjop1fZQoaAZHQHHaWtp22XtoB005AWgIR0CRE0bYK6WgdX2UKGgGR0BgPTX8O09haAdN6ANoCEdAkRRAV45cT3V9lChoBkdAcvc9wm3OOmgHTS8BaAhHQJEVOnZTQ3R1fZQoaAZHQHH1aDPGACpoB0v2aAhHQJEVZRLsa891fZQoaAZHQHGv6rilzltoB00HAWgIR0CRFiyeqaPTdX2UKGgGR0BtwVbRnezlaAdL92gIR0CRFwB2wFC+dX2UKGgGR0BwZDSRbKRuaAdNBQFoCEdAkRdXu/k/8nV9lChoBkdAcfGoLG7z1GgHS/toCEdAkRdYi1RceXV9lChoBkdAcCGSFXaJymgHTRgBaAhHQJEY56KLsKN1fZQoaAZHQHNmdmlImPZoB00mAWgIR0CRGV58Sf16dX2UKGgGR0By6gFY+0PZaAdNCAFoCEdAkSwNNahYeXV9lChoBkdAcf+vmozeoGgHTSQBaAhHQJEsGbI91U51fZQoaAZHQGyTDC53C9BoB00xAWgIR0CRLE35N47jdX2UKGgGR0BwtKM2m52AaAdL/mgIR0CRLZfkmx+sdX2UKGgGR0BtHED8tPHlaAdNHAFoCEdAkS5SR8twrHV9lChoBkdAcYZ3CsOoYWgHTS8BaAhHQJEu+zLOiWV1fZQoaAZHQGzbH8KohpxoB00JAWgIR0CRL4nQY1pCdX2UKGgGR0Bsziy+pOvdaAdNCAFoCEdAkTDGlQ/HHXV9lChoBkdAczR8VYZEUmgHTRACaAhHQJEzHP0I1Lt1fZQoaAZHQHCkSOBDohZoB00vAWgIR0CRMxg13t8edX2UKGgGR0BwcHEyckMTaAdNCQFoCEdAkTP4VM23rnV9lChoBkdAcXlEwWWQfmgHTSkBaAhHQJE1Fvddmg91fZQoaAZHQHDoYd+5OJtoB01KAWgIR0CRNYwSamXPdX2UKGgGR0ByGFTZQHiWaAdNRAFoCEdAkTbGexwAEXV9lChoBkdAbkRMB6rvLGgHTSsBaAhHQJE30p2ECeV1fZQoaAZHQHH5s5wOvuBoB00wAWgIR0CROHTb349HdX2UKGgGR0BzBjIo3JgcaAdNBAFoCEdAkTh+JP69CnV9lChoBkdAcfXrDZUT+WgHTRgBaAhHQJE5Wlk6Lfl1fZQoaAZHQG9ISrYGt6poB00hAWgIR0CROYeZXuE3dX2UKGgGR0ByBvxG2CumaAdNEQFoCEdAkToIGUwBYHV9lChoBkdAbaKQ9zOopGgHTSYBaAhHQJE7QQ+UyHp1fZQoaAZHQG3rQhwEQoVoB00RAWgIR0CRO2X3xnWbdX2UKGgGR0BwJR7b+Lm7aAdNIQFoCEdAkTuPboKUmnV9lChoBkdAcfQE/jbSJGgHTQcBaAhHQJE74yM1jy51fZQoaAZHQHGTsf7rLQpoB00QAWgIR0CRPYQXhwVCdX2UKGgGR0BxZx97WuoxaAdL3WgIR0CRPmo5ggHNdX2UKGgGR0ByTT3pOerdaAdNEQFoCEdAkT773fyf+XV9lChoBkdAcADJW/8EV2gHTSkBaAhHQJE/CtmtheB1fZQoaAZHQHKa0sFt8/loB00KAWgIR0CRPxydWhh6dX2UKGgGR0BydHCAMDwIaAdL8mgIR0CRP/BlcyFgdX2UKGgGR0BvsPt0FKTTaAdNCwFoCEdAkUGAy6+WW3V9lChoBkdAbH48274BWGgHTRABaAhHQJFBqUgSvkl1fZQoaAZHQHEQZxiobXJoB00SAWgIR0CRQuCFsYVJdX2UKGgGR0By79l5GBnSaAdNqAFoCEdAkUL/pljEvXV9lChoBkdAcO8kxASnL2gHTSMBaAhHQJFDX51vETB1fZQoaAZHQHAi/NRm9QJoB00cAWgIR0CRQ9RA8jiXdX2UKGgGR0Bwz0jUutfYaAdNDQFoCEdAkUR45T6zmnV9lChoBkdAcG/TDfm9x2gHTRkBaAhHQJFFK2qkuYh1fZQoaAZHQHFfkkGA09BoB00WAWgIR0CRRXA9V3lkdX2UKGgGR0Bxlk1DSgGsaAdNMgFoCEdAkUXM+u/1x3V9lChoBkdAb2MUu+RHPWgHTQMBaAhHQJFGerR0EHN1fZQoaAZHQHGspxR2r4poB00YAWgIR0CRSCZoPCl8dX2UKGgGR0BxCd97WuoxaAdNFQFoCEdAkUimys0YTHV9lChoBkdAcVy0P6KtP2gHTSMBaAhHQJFJG7iADq51fZQoaAZHQHGH6suFpPBoB0vkaAhHQJFJg5hjOLR1fZQoaAZHQHDfvNVzZHxoB00sAWgIR0CRSXrGza9LdX2UKGgGR0Bya+YPXkHVaAdNEwFoCEdAkUrMrqdH2HV9lChoBkdAciUA0sOG02gHS+5oCEdAkUrL1h9b5nV9lChoBkdAcq5SWqtHQWgHS+VoCEdAkUtRRZU1h3V9lChoBkdAb7rjghr302gHTW8BaAhHQJFMX6WPcSJ1fZQoaAZHQHIJUsasIVxoB00qAWgIR0CRTSsnRb8ndX2UKGgGR0BxhWwpvxYraAdNOQFoCEdAkU1cYMvysnV9lChoBkdAcDJ56dDpkmgHTRABaAhHQJFNavLX+VF1fZQoaAZHQHGrMmWt2cJoB00DAWgIR0CRTeF3Y+SsdX2UKGgGR0BzdcVpKzzFaAdNAQFoCEdAkVC9knTiKnV9lChoBkdAcFCZfD1oQGgHTUMBaAhHQJFRi+oLofV1fZQoaAZHQHB0ml/H5rRoB0v8aAhHQJFRqyX2M851fZQoaAZHQHKtBoRIz31oB01yAWgIR0CRUb+fywwCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |