DPO-Zephyr-7B / README.md
ZhangShenao's picture
Update README.md
b07a419 verified
---
license: mit
base_model: HuggingFaceH4/mistral-7b-sft-beta
tags:
- alignment-handbook
- dpo
- trl
- selm
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: DPO-Zephyr-7B
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[Self-Exploring Language Models: Active Preference Elicitation for Online Alignment](https://arxiv.org/abs/2405.19332).
# DPO-Zephyr-7B
This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) using synthetic data based on on the HuggingFaceH4/ultrafeedback_binarized dataset.
## Model description
- Model type: A 7B parameter Zephyr-based Self-Exploring Language Models (SELM).
- License: MIT
## Results
| | AlpacaEval 2.0 (LC WR) | MT-Bench (Average) |
|----------------------------------------|------------------------|--------------------|
| [SELM-Zephyr-7B-iter-3](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-3) | &emsp; &emsp; &emsp;&emsp; 24.00 | &emsp; &emsp; &emsp; 7.48 |
| [SELM-Zephyr-7B-iter-2](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-2) | &emsp; &emsp; &emsp;&emsp; 23.40 | &emsp; &emsp; &emsp; 7.72 |
| [SELM-Zephyr-7B-iter-1](https://huggingface.co/ZhangShenao/SELM-Zephyr-7B-iter-1) | &emsp; &emsp; &emsp;&emsp; 20.28 | &emsp; &emsp; &emsp; 7.42 |
| [DPO-Zephyr-7B](https://huggingface.co/ZhangShenao/DPO-Zephyr-7B) | &emsp; &emsp; &emsp;&emsp; 14.45 | &emsp; &emsp; &emsp; 7.28 |
### Training hyperparameters
The following hyperparameters were used during training:
- alpha: 0.001
- beta: 0.01
- train_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 1
### Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1