SetFit with sentence-transformers/all-MiniLM-L6-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label F1
all 0.7727

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dimension1_setfit")
# Run inference
preds = model("I loved the spiderman movie!")

Training Details

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (4.4226261631087265e-05, 4.4226261631087265e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0006 1 0.2748 -
0.0280 50 0.2678 -
0.0559 100 0.2688 -
0.0839 150 0.2709 -
0.1119 200 0.2656 -
0.1398 250 0.259 -
0.1678 300 0.2565 -
0.1957 350 0.2655 -
0.2237 400 0.2737 -
0.2517 450 0.2501 -
0.2796 500 0.2512 -
0.3076 550 0.2381 -
0.3356 600 0.2568 -
0.3635 650 0.2642 -
0.3915 700 0.2743 -
0.4195 750 0.2635 -
0.4474 800 0.263 -
0.4754 850 0.2541 -
0.5034 900 0.2492 -
0.5313 950 0.26 -
0.5593 1000 0.257 -
0.5872 1050 0.2525 -
0.6152 1100 0.2594 -
0.6432 1150 0.2656 -
0.6711 1200 0.2737 -
0.6991 1250 0.2683 -
0.7271 1300 0.259 -
0.7550 1350 0.2617 -
0.7830 1400 0.294 -
0.8110 1450 0.2446 -
0.8389 1500 0.2618 -
0.8669 1550 0.2562 -
0.8949 1600 0.264 -
0.9228 1650 0.2534 -
0.9508 1700 0.2484 -
0.9787 1750 0.2666 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zlovoblachko/dimension1_setfit

Finetuned
(195)
this model

Evaluation results