SetFit with BAAI/bge-small-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label F1
all 0.4950

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dimension3_setfit_BAAI")
# Run inference
preds = model("I loved the spiderman movie!")

Training Details

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (0.0003728764106052876, 0.0003728764106052876)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0007 1 0.3158 -
0.0353 50 0.2596 -
0.0706 100 0.2583 -
0.1059 150 0.259 -
0.1412 200 0.268 -
0.1766 250 0.2594 -
0.2119 300 0.2606 -
0.2472 350 0.2628 -
0.2825 400 0.2643 -
0.3178 450 0.2594 -
0.3531 500 0.2579 -
0.3884 550 0.2632 -
0.4237 600 0.2583 -
0.4590 650 0.2575 -
0.4944 700 0.2636 -
0.5297 750 0.2579 -
0.5650 800 0.2652 -
0.6003 850 0.2599 -
0.6356 900 0.2592 -
0.6709 950 0.264 -
0.7062 1000 0.2625 -
0.7415 1050 0.2568 -
0.7768 1100 0.2651 -
0.8121 1150 0.2586 -
0.8475 1200 0.2636 -
0.8828 1250 0.2614 -
0.9181 1300 0.2594 -
0.9534 1350 0.2614 -
0.9887 1400 0.2621 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
18
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zlovoblachko/dimension3_setfit_BAAI

Finetuned
(135)
this model

Evaluation results