File size: 2,255 Bytes
5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 d5185b9 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 5d36f54 fa99127 d5185b9 fa99127 d5185b9 fa99127 d5185b9 5d36f54 fa99127 5d36f54 fa99127 d5185b9 5d36f54 fa99127 5d36f54 fa99127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-finetuned-uncased-squad_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-uncased-squad_v2
This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2307 | 0.2 | 100 | 1.8959 |
| 1.9581 | 0.39 | 200 | 1.4856 |
| 1.6358 | 0.59 | 300 | 1.3948 |
| 1.4964 | 0.78 | 400 | 1.2934 |
| 1.4169 | 0.98 | 500 | 1.2605 |
| 1.327 | 1.18 | 600 | 1.2218 |
| 1.2763 | 1.37 | 700 | 1.2539 |
| 1.2755 | 1.57 | 800 | 1.2090 |
| 1.251 | 1.76 | 900 | 1.2041 |
| 1.229 | 1.96 | 1000 | 1.2159 |
| 1.1921 | 2.16 | 1100 | 1.1828 |
| 1.1926 | 2.35 | 1200 | 1.2120 |
| 1.1606 | 2.55 | 1300 | 1.1737 |
| 1.1486 | 2.75 | 1400 | 1.1469 |
| 1.1195 | 2.94 | 1500 | 1.1459 |
| 1.0883 | 3.14 | 1600 | 1.1570 |
| 1.0526 | 3.33 | 1700 | 1.1771 |
| 1.0611 | 3.53 | 1800 | 1.1740 |
| 1.0521 | 3.73 | 1900 | 1.1596 |
| 1.0476 | 3.92 | 2000 | 1.1538 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|