bert-base-uncased-finetuned-swag
This model is a fine-tuned version of bert-base-uncased on the swag dataset. It achieves the following results on the evaluation set:
- Loss: 0.5155
- Accuracy: 0.8002
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6904 | 1.0 | 4597 | 0.5155 | 0.8002 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
- Downloads last month
- 8
Inference API (serverless) does not yet support transformers models for this pipeline type.