🧩 Configuration

slices:
  - sources:
      - model: liminerity/M7-7b
        layer_range: [0, 32]
      - model: AurelPx/Percival_01-7b-slerp
        layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/M7-7b
parameters:
  t:
    - filter: self_attn
      value: [0.640933773922566, 0.3998428539638744, 0.4159440784141908, 0.6014279286777084, 0.43223728395457706]
    - filter: mlp
      value: [0.359066226077434, 0.6001571460361256, 0.39857207132229155, 0.39857207132229155, 0.5677627160454229]
    - value: 0.6897342094933905
dtype: bfloat16
random_seed: 0
    ```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "aaron-di/Yamshadowexperiment28M70.64-0.4-0.42-0.6-0.43-0.69-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
17
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aaron-di/Yamshadowexperiment28M70.64-0.4-0.42-0.6-0.43-0.69-7B