Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints
arvindabacus's picture
Update README.md
b7b3720 verified
|
raw
history blame
4.5 kB
metadata
library_name: transformers
license: llama3
datasets:
  - aqua_rat
  - microsoft/orca-math-word-problems-200k
  - m-a-p/CodeFeedback-Filtered-Instruction

Smaug-Llama-3-70B-Instruct

Built with Meta Llama 3

image/png

This model was built using a new Smaug recipe for improving performance on real world multi-turn conversations applied to meta-llama/Meta-Llama-3-70B-Instruct.

The model outperforms Llama-3-70B-Instruct substantially, and is on par with GPT-4-Turbo, on MT-Bench (see below).

EDIT: Smaug-Llama-3-70B-Instruct is the top open source model on Arena-Hard currently! It is also nearly on par with Claude Opus - see below.

We are conducting additional benchmark evaluations and will add those when available.

Model Description

How to use

The prompt format is unchanged from Llama 3 70B Instruct.

Use with transformers

See the snippet below for usage with Transformers:

import transformers
import torch

model_id = "abacusai/Smaug-Llama-3-70B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

Evaluation

Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge))

Model Score 95% Confidence Interval Average Tokens
GPT-4-Turbo-2024-04-09 82.6 (-1.8, 1.6) 662
GPT-4o 78.3 (-2.4, 2.1) 685
Gemini-1.5-pro-latest 72.1 (-2.3, 2.2) 630
Claude-3-Opus-20240229 60.4 (-3.3, 2.4) 541
Smaug-Llama-3-70B-Instruct 56.7 (-2.2, 2.6) 661
GPT-4-0314 50.0 (-0.0, 0.0) 423
Claude-3-Sonnet-20240229 46.8 (-2.1, 2.2) 552
Llama-3-70B-Instruct 41.1 (-2.5, 2.4) 583
GPT-4-0613 37.9 (-2.2, 2.0) 354
Mistral-Large-2402 37.7 (-1.9, 2.6) 400
Mixtral-8x22B-Instruct-v0.1 36.4 (-2.7, 2.9) 430
Qwen1.5-72B-Chat 36.1 (-2.5, 2.2) 474
Command-R-Plus 33.1 (-2.1, 2.2) 541
Mistral-Medium 31.9 (-2.3, 2.4) 485
GPT-3.5-Turbo-0613 24.8 (-1.6, 2.0) 401

MT-Bench

########## First turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         1     9.40000                                                                                                                            
GPT-4-Turbo                        1     9.37500
Meta-Llama-3-70B-Instruct          1     9.21250 
########## Second turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         2     9.0125
GPT-4-Turbo                        2     9.0000
Meta-Llama-3-70B-Instruct          2     8.8000
########## Average ##########
                 score
model
Smaug-Llama-3-70B-Instruct          9.206250
GPT-4-Turbo                         9.187500
Meta-Llama-3-70B-Instruct           9.006250
Model First turn Second Turn Average
Smaug-Llama-3-70B-Instruct 9.40 9.01 9.21
GPT-4-Turbo 9.38 9.00 9.19
Meta-Llama-3-70B-Instruct 9.21 8.80 9.01

This version of Smaug uses new techniques and new data compared to Smaug-72B, and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.