mal-mms-epoch4 / README.md
abatpool's picture
End of training
f70e400 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-fl102
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: mal-mms-epoch4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ml
          split: validation
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 1.1976492421899165

mal-mms-epoch4

This model is a fine-tuned version of facebook/mms-1b-fl102 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 6.7720
  • Wer: 1.1976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 8
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.9826 0.4 16 8.2570 1.0439
4.2851 0.8 32 8.1419 1.0687
8.2118 1.2 48 7.8111 1.0730
4.362 1.6 64 7.3669 1.1766
7.9241 2.0 80 7.0512 1.2072
4.5478 2.4 96 6.9138 1.2007
3.9726 2.8 112 6.8219 1.2193
6.0029 3.2 128 6.8214 1.2069
4.328 3.6 144 6.8251 1.2014
6.5417 4.0 160 6.7720 1.1976

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1