whisper-base-finetuned2222222222222222222222222222222

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0018
  • Wer: 0.125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.7056 0.8 20 6.4502 16.25
4.7836 1.6 40 2.9149 10.375
1.8399 2.4 60 0.8254 7.875
0.3132 3.2 80 0.0852 3.875
0.0335 4.0 100 0.0190 1.7500
0.0067 4.8 120 0.0080 1.0
0.0032 5.6 140 0.0050 0.375
0.0021 6.4 160 0.0039 0.125
0.0017 7.2 180 0.0034 0.125
0.0015 8.0 200 0.0030 0.125
0.0013 8.8 220 0.0027 0.125
0.0012 9.6 240 0.0025 0.125
0.0011 10.4 260 0.0023 0.125
0.001 11.2 280 0.0021 0.125
0.0009 12.0 300 0.0020 0.125
0.0009 12.8 320 0.0020 0.125
0.0009 13.6 340 0.0019 0.125
0.0008 14.4 360 0.0018 0.125
0.0009 15.2 380 0.0018 0.125
0.0008 16.0 400 0.0018 0.125

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abbenedek/finetuned

Finetuned
(391)
this model