File size: 4,764 Bytes
caa1790
 
 
 
 
 
 
 
7181897
6325747
 
 
 
 
 
 
 
 
 
 
 
 
 
caa1790
 
 
 
 
7181897
 
 
 
6d4cacc
7181897
caa1790
7181897
caa1790
 
 
3f7fb84
caa1790
3f7fb84
caa1790
3f7fb84
 
 
 
 
 
 
 
 
 
caa1790
3f7fb84
caa1790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c542d41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: mit
tags:
- automatic-speech-recognition
- asr
- pytorch
- wav2vec2
- wolof
- wo
model-index:
- name: wav2vec2-xls-r-300m-wolof
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
 
    metrics:
       - name: Test WER
         type: wer
         value: 21.25
       - name: Validation Loss
         type: Loss
         value: 0.36

---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-wolof  

Wolof is a language spoken in Senegal and neighbouring countries, this language is not too well represented, there are few resources in the field of Text en speech
In this sense we aim to bring our contribution to this, it is in this sense that enters this repo. 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) , that is trained with the largest available speech dataset of the  [ALFFA_PUBLIC](https://github.com/besacier/ALFFA_PUBLIC/tree/master/ASR/WOLOF)

It achieves the following results on the evaluation set:
- Loss: 0.367826	
- Wer: 0.212565

## Model description
The duration of the training data is 16.8 hours, which we have divided into 10,000 audio files for the training and 3,339 for the test.
## Training and evaluation data
We eval the model at every 1500 step , and log it .  and save at every 33340 step
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-4
- train_batch_size: 3
- eval_batch_size : 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10.0

### Training results

| Step    | Training Loss | Validation Loss | Wer    |
|:-------:|:-------------:|:---------------:|:------:|
| 1500	 | 2.854200	 |0.642243	 |0.543964  |
| 3000	| 0.599200 |  0.468138 |  	0.429549|
| 4500	| 0.468300 |	0.433436 |	0.405644|
| 6000	| 0.427000 |	0.384873 |	0.344150|
| 7500	| 0.377000 |	0.374003 |	0.323892|
| 9000	| 0.337000 |	0.363674 |	0.306189|
| 10500	| 0.302400	| 0.349884	 |0 .283908 |
| 12000	| 0.264100	| 0.344104  |0.277120|
| 13500	|0 .254000	|0.341820	 |0.271316|
| 15000 |	0.208400|	0.326502 |	0.260695|
| 16500 |	0.203500|	0.326209 |	0.250313|
| 18000	|0.159800	|0.323539 |	0.239851|
| 19500 |	0.158200 |	0.310694 |	0.230028|
| 21000 |	0.132800 |	0.338318 |	0.229283|
| 22500 |	0.112800 |	0.336765 |	0.224145|
| 24000 |	0.103600 |	0.350208 |	0.227073 |
| 25500 |	0.091400 |	0.353609 |	0.221589 |
| 27000 | 0.084400 |	0.367826 |	0.212565 |


## Usage
The model can be used directly (without a language model) as follows:
```python
import librosa
import warnings
from transformers import AutoProcessor, AutoModelForCTC
from datasets import Dataset, DatasetDict
from datasets import load_metric

wer_metric = load_metric("wer")

wolof = pd.read_csv('Test.csv') # wolof contains the columns of file , and transcription
wolof = DatasetDict({'test': Dataset.from_pandas(wolof)})

chars_to_ignore_regex = '[\"\?\.\!\-\;\:\(\)\,]'

def remove_special_characters(batch):
    batch["transcription"] = re.sub(chars_to_ignore_regex, '', batch["transcription"]).lower() + " "
    return batch
    
    
wolof = wolof.map(remove_special_characters)

processor = AutoProcessor.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof")
model = AutoModelForCTC.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof")

warnings.filterwarnings("ignore")
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["file"], sr = 16000)
    batch["speech"] = speech_array.astype('float16')
    batch["sampling_rate"] = sampling_rate
    batch["target_text"] = batch["transcription"]
    return batch
 
wolof = wolof.map(speech_file_to_array_fn, remove_columns=wolof.column_names["test"], num_proc=1)   
  
def map_to_result(batch):
    model.to("cuda")
    input_values = processor(
      batch["speech"], 
      sampling_rate=batch["sampling_rate"], 
      return_tensors="pt"
    ).input_values.to("cuda")

    with torch.no_grad():
        logits = model(input_values).logits
        pred_ids = torch.argmax(logits, dim=-1)
        batch["pred_str"] = processor.batch_decode(pred_ids)[0]

    return batch
   
 results = wolof["test"].map(map_to_result) 
 
 print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["transcription"])))
 
```

## PS:

The results obtained can be improved by using :

- Wav2vec2 + language model . 
- Build a Spellcheker from the text of the data
- Sentence Edit Distance