minilm-finetuned-emotion-class-model

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1026
  • F1 Score: 0.6649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score
1.8502 1.0 270 1.4798 0.5071
1.3541 2.0 540 1.2377 0.5836
1.1809 3.0 810 1.1675 0.6202
1.0891 4.0 1080 1.1081 0.6522
1.0205 5.0 1350 1.0815 0.6603
0.9624 6.0 1620 1.0640 0.6645
0.9185 7.0 1890 1.0572 0.6689
0.8811 8.0 2160 1.0433 0.6693
0.8531 9.0 2430 1.0479 0.6746
0.8208 10.0 2700 1.0536 0.6697
0.8014 11.0 2970 1.0564 0.6713
0.7798 12.0 3240 1.0634 0.6716
0.7568 13.0 3510 1.0744 0.6698
0.7414 14.0 3780 1.0782 0.6704
0.7265 15.0 4050 1.0810 0.6694
0.7128 16.0 4320 1.0885 0.6684
0.7054 17.0 4590 1.0917 0.6631
0.6927 18.0 4860 1.0961 0.6678
0.6848 19.0 5130 1.1005 0.6644
0.6742 20.0 5400 1.1026 0.6649

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abhyast/minilm-finetuned-emotion-class-model

Finetuned
(30)
this model