metadata
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- f1
model-index:
- name: minilm-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: F1
type: f1
value: 0.9033293946409706
minilm-finetuned-emotion
This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.4768
- F1: 0.9033
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
1.4483 | 1.0 | 250 | 1.1727 | 0.4717 |
1.0214 | 2.0 | 500 | 0.8164 | 0.7244 |
0.7448 | 3.0 | 750 | 0.6287 | 0.8541 |
0.5835 | 4.0 | 1000 | 0.5179 | 0.8911 |
0.5028 | 5.0 | 1250 | 0.4768 | 0.9033 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1