BERT NER Organization Name Extraction
Overview
Fine-tune of the bert-base-uncased
model, trained to identify and classify named entities within affiliation strings, focusing on organizations and locations.
Training Data
Training data comprised approximately 500,000 programatically annotated items, where named entities in affiliation strings were tagged with their respective types (organizations, locations), and all other text is marked as extraneous. Example annotation format:
O: Internal
O: Medicine
O: Complex
B-ORG: College
I-ORG: of
I-ORG: Medical
I-ORG: Sciences
B-LOC: New
I-LOC: Delhi
B-LOC: India
The training data was derived from OpenAlex affiliation strings and their ROR ID assignments. Tagging was done using the corresponding name and location metadata from the assigned ROR record. Location names were further supplemented with aliases derived from the Unicode Common Locale Data Repository (CLDR).
Training Details
- Dataset Size: ~500,000 items
- Number of Epochs: 3
- Optimizer: AdamW
- Training Environment: Google Colab T-4 High Ram instance
- Training Duration: Approximately 8 hours
Usage
See https://github.com/ror-community/affiliation-matching-experimental/tree/main/ner_tests/inference for example usage.
- Downloads last month
- 1,387