|
--- |
|
tags: |
|
- tabular |
|
- classification |
|
- tabular-classification |
|
- google-ads |
|
widget: |
|
structuredData: |
|
keyword: |
|
- garner |
|
- chevy |
|
- location |
|
class: |
|
- brand |
|
- brand |
|
- geo |
|
datasets: |
|
- adgrowr/autotrain-data-negative-keywords-classifier |
|
co2_eq_emissions: |
|
emissions: 1.2831572182351383 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 61622134846 |
|
- CO2 Emissions (in grams): 1.2832 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.883 |
|
- Accuracy: 0.583 |
|
- Macro F1: 0.184 |
|
- Micro F1: 0.583 |
|
- Weighted F1: 0.429 |
|
- Macro Precision: 0.146 |
|
- Micro Precision: 0.583 |
|
- Weighted Precision: 0.340 |
|
- Macro Recall: 0.250 |
|
- Micro Recall: 0.583 |
|
- Weighted Recall: 0.583 |
|
|
|
## Usage |
|
|
|
```python |
|
import json |
|
import joblib |
|
import pandas as pd |
|
|
|
model = joblib.load('model.joblib') |
|
config = json.load(open('config.json')) |
|
|
|
features = config['features'] |
|
|
|
# data = pd.read_csv("data.csv") |
|
data = data[features] |
|
data.columns = ["feat_" + str(col) for col in data.columns] |
|
|
|
predictions = model.predict(data) # or model.predict_proba(data) |
|
|
|
``` |