ppo-LunarLander-v2 / config.json
adityaaswani1's picture
Upload PPO LunarLander-v2 trained agent
0dcbd3d
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd7b1b33be0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd7b1b33c70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd7b1b33d00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd7b1b33d90>", "_build": "<function ActorCriticPolicy._build at 0x7dd7b1b33e20>", "forward": "<function ActorCriticPolicy.forward at 0x7dd7b1b33eb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd7b1b33f40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd7b1b38040>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd7b1b380d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd7b1b38160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd7b1b381f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd7b1b38280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd7b22bb500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699143625451954304, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK3FOj5DP4s/6d3EPoSUDL/nk6w+qiE8PgAAAAAAAAAAlhdOvqPRmD+Yquq+gwkfvwP5Yr72s0C9AAAAAAAAAABNtgO+4oF5PxvvYL5SAiq/+57yvfQ2Pr0AAAAAAAAAAKZ6+L0SXaY/Q3odvxlI/777VAe+NdpPvgAAAAAAAAAAMwVQvHFJGjwd6Ds9RYgrvo/CtDzbRKq8AAAAAAAAAACAlW4+WXGQPyMVmT7HVQ6/erWKPoxjCL0AAAAAAAAAAC0yMj4maIo+KBZevp05t74VKF68zalDvAAAAAAAAAAARnQePhNNcD8CV1I+wXMCv7f9jD5KhW89AAAAAAAAAAAzS/i7FFSMuoIhZDpJVwu2mRXdugJuhLkAAIA/AACAP/M6t70fBcY4Au+LPhJqKD0C8CI89k8TPgAAgD8AAAAAQ3ugPifgPD9DU0C+HOzovm4p/z0+mSq+AAAAAAAAAAAzzRS++7E1P+YhZbzpLgq//ly3vd3w0z0AAAAAAAAAAM3E9L1PrH+8Fg2RvbxkPj0UOQC9IE0HPQAAgD8AAAAA2rbwPQ/xRj3WCym+sgMDvi2viryavJu7AAAAAAAAAADaGt29Fs9nPTXeGT50AHm+rqNUPOoyWj0AAAAAAAAAAO20eL63Vpc+wF+dPrxuzL5DO4W9ygVaPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAKV8Ti84CMAWyUS9aMAXSUR0CoWd6jWTX8dX2UKGgGR0BxOLSPU8V6aAdL52gIR0CoWjLi++M7dX2UKGgGR0Bwx6jmCAc1aAdL62gIR0CoWjd7ngYQdX2UKGgGR0BzMPIBBAv+aAdNkQFoCEdAqFqHqkdmx3V9lChoBkdAb0a7JW/8EWgHS9toCEdAqFqKveP7vXV9lChoBkdAcOKdGy5ZsGgHS89oCEdAqFrlMbm2cHV9lChoBkdAcJAQOWjXWmgHS75oCEdAqFsNY6nzhHV9lChoBkdAcUHLORkmQmgHS7xoCEdAqFs3sHB1tHV9lChoBkdAcncaakRBeGgHS+5oCEdAqFtQicG1QnV9lChoBkdAcKWxmCiAUmgHS+BoCEdAqFthFTefqXV9lChoBkdAcaPEfDDTB2gHS+xoCEdAqFuWjj7yhHV9lChoBkdAcMo4S6DoQmgHS8doCEdAqFusFwDNhXV9lChoBkdAc1t4dZJTVGgHS81oCEdAqFv7J+2E03V9lChoBkdAcKCwJPZZjmgHS8doCEdAqFx0ophF3XV9lChoBkdAcCYW/ag262gHS99oCEdAqF0DMvAXVXV9lChoBkdAcGwew9q1xGgHS9ZoCEdAqF0QZTAFgXV9lChoBkdAb7EsaKk2xmgHS9FoCEdAqF1IBT4tYnV9lChoBkdAYUy5Yoy9EmgHTegDaAhHQKhdUksSTQp1fZQoaAZHQHIWAu7HyVhoB0vnaAhHQKhdkvf0mMR1fZQoaAZHQHKkHk1dgOVoB0vbaAhHQKhdrncL0Bh1fZQoaAZHQHCrkhA4XGhoB0vfaAhHQKhdvVKf4AV1fZQoaAZHQHEyLvCuU2VoB0vHaAhHQKhd3cj7hvR1fZQoaAZHQG68VhLGrCFoB0vFaAhHQKheDFZxJd11fZQoaAZHQHGcZdGAkLRoB0vhaAhHQKheEljVhCt1fZQoaAZHQHBGjl90A95oB0vGaAhHQKheRq/M4cZ1fZQoaAZHQG3g30PH1e1oB0vTaAhHQKhehLgXMyJ1fZQoaAZHQHJIbytmthdoB0vQaAhHQKhexZV4oql1fZQoaAZHQHN0LTx5LRNoB00IAWgIR0CoXsmLtNSJdX2UKGgGR0BxVhBHCoCNaAdL42gIR0CoYAXNTtLMdX2UKGgGR0Bxsh/gBLf2aAdL52gIR0CoYCPl+3H8dX2UKGgGR0BxkojUutfYaAdLt2gIR0CoYCrHMlkZdX2UKGgGR0BzAe87IT4+aAdL5GgIR0CoYFQRPGhmdX2UKGgGR0Bwm2MuOCGvaAdLyWgIR0CoYF096kZadX2UKGgGR0Bx1Ool2NedaAdL32gIR0CoYI1iWmgrdX2UKGgGR0Bwhs8FINExaAdLzGgIR0CoYNCbc45tdX2UKGgGR0ByLT9aUzKtaAdNBwFoCEdAqGDdhiLEUHV9lChoBkdAcU0vwmVqvmgHS9FoCEdAqGDreVLSNXV9lChoBkdAcgZL0z0pVmgHS+hoCEdAqGEERradtnV9lChoBkdAaXDgZTAFgWgHTbIBaAhHQKhhTEKE3851fZQoaAZHQHCkvf4yoGZoB0vRaAhHQKhhtHeaa1F1fZQoaAZHQHKLZWq94/xoB00BAWgIR0CoYc0AtFrmdX2UKGgGR0BumPDYRNAUaAdL22gIR0CoYdTjm0VrdX2UKGgGR0ByJNxS5y2haAdL9GgIR0CoYeODzyz5dX2UKGgGR0BxKnKGL1mKaAdLvmgIR0CoYrvZIxxldX2UKGgGR0BxHfdhy8zzaAdLzWgIR0CoYyCyQgcMdX2UKGgGR0By0txAB1cMaAdL2WgIR0CoYyTpHI6sdX2UKGgGR0ByAkYBNmDlaAdL5mgIR0CoYzNvXK8tdX2UKGgGR0BzEekKu0TlaAdL5GgIR0CoY3cMd92HdX2UKGgGR0ByZtRO1v2oaAdLxWgIR0CoY3ovi97GdX2UKGgGR0BuyHpKSPluaAdLvGgIR0CoY44u9OARdX2UKGgGR0Bx1hKEnLJTaAdL4mgIR0CoY59at9x7dX2UKGgGR0BvZwBLf1pTaAdLzWgIR0CoZA5DzAerdX2UKGgGR0Bx45L9MsYmaAdL72gIR0CoZBLD63y7dX2UKGgGR0Bw6bIikftAaAdL/GgIR0CoZFDYI0IkdX2UKGgGR0Bv/821lXijaAdL4GgIR0CoZMGnwXqJdX2UKGgGR0BxByCxu89PaAdL3mgIR0CoZNhLwnYydX2UKGgGR0Bwc13yI55raAdL6GgIR0CoZPHXEqDsdX2UKGgGR0ByfwMoc7yQaAdL5WgIR0CoZPztTkyUdX2UKGgGR0BwIXsu3+dcaAdLvmgIR0CoZbgxJul5dX2UKGgGR0BwnOxptaZAaAdLxGgIR0CoZcljurp8dX2UKGgGR0BxKabExZdOaAdL0mgIR0CoZgujh1kldX2UKGgGR0Bq0lWn0kGBaAdNyAJoCEdAqGYk6tDD0nV9lChoBkdAcpkyLQ5WBGgHS8ZoCEdAqGYsgfU4JnV9lChoBkdAcRefLLZBcGgHS7toCEdAqGYrIgeRxXV9lChoBkdAcg0UwBYFJWgHS/9oCEdAqGY3io86m3V9lChoBkdAcdGr9ETg22gHS9xoCEdAqGZru8brC3V9lChoBkdAcQBQ8wHqvGgHS8ZoCEdAqGavLLZBcHV9lChoBkdAcg95PuXu3WgHS85oCEdAqGbJyp71I3V9lChoBkdAcPbIeYD1XmgHS/5oCEdAqGbfl0YCQ3V9lChoBkdAcXnjHGS6lWgHS+doCEdAqGdDdk8RtnV9lChoBkdAcD1TPBzmwWgHS9FoCEdAqGd3RkVer3V9lChoBkdAbp46FuejEmgHS9hoCEdAqGeu7SRbKXV9lChoBkdAcCaIZZSvT2gHS71oCEdAqGgTifg75nV9lChoBkdAcq0aLXL/0mgHS/RoCEdAqGgYq3EycnV9lChoBkdAcr3FaB7NS2gHS8VoCEdAqGg9WKdhAnV9lChoBkdAcaXgKneiz2gHS7xoCEdAqGh+Awwj+3V9lChoBkdAclGronrpq2gHS95oCEdAqGjTeXRgJHV9lChoBkdAcmxxsVLzw2gHS9loCEdAqGjbPppvgnV9lChoBkdAchJTGHYYi2gHS+poCEdAqGkcMI/qxHV9lChoBkdAcHm46fapP2gHS95oCEdAqGk8XaakRHV9lChoBkdAbkGlP8AJcGgHS/poCEdAqGleFJxvN3V9lChoBkdAcZNIpH7P6mgHS9loCEdAqGl3t4RmLHV9lChoBkdAcrh59E1EVmgHS89oCEdAqGmMPczqKXV9lChoBkdAczVwPRRdhWgHS9xoCEdAqGmbmSyMUHV9lChoBkdAcEqb4agmJGgHS95oCEdAqGphJGvwE3V9lChoBkdAcSNkBjnV5WgHS9xoCEdAqGqoCQtBfXV9lChoBkdAcgjfcvduYWgHS9doCEdAqGrWclPac3V9lChoBkdAcRWD3dsSCmgHS8poCEdAqGsjkQwsXnV9lChoBkdAcHrj1wo9cWgHS9poCEdAqGtzGcWj5HV9lChoBkdAcI2zundfs2gHS9xoCEdAqGu2r2g3+HV9lChoBkdAcA7bHIZIhGgHS8toCEdAqGvC3iJfpnV9lChoBkdAbrkkWRA8jmgHS81oCEdAqGxSO938oHV9lChoBkdAcXlZIQOFxmgHS79oCEdAqGxsKVpsXXV9lChoBkdAcbs0oBq9G2gHS95oCEdAqGybVWjoIXV9lChoBkdAccYT+ee4C2gHS8NoCEdAqG0gBFNL13V9lChoBkdAae4gbIcR2GgHTTwCaAhHQKhtM+mFajh1fZQoaAZHQHF5Xdj5KvpoB0vRaAhHQKhtQt/4Irx1fZQoaAZHQHAoYM4LkS5oB0veaAhHQKhtWNcW0qp1fZQoaAZHQHAGVTvRZ2ZoB0vRaAhHQKhtd3V09yN1fZQoaAZHQHD5PTodMkBoB0v+aAhHQKhtvFhoduJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}