This repo contains LoRA adapter weights.

Model Description

Results

Prompt Approach GSM8k MATH
Zero-Shot CoT 75.81 -

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: float16

LoraConfig params:

  • r: 128
  • lora_alpha: lora_r * 2
  • lora_dropout: 0.05
  • bias: "none"
  • task_type: "CAUSAL_LM"
  • target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]

The hyperparameters for the LoRA fine-tuning are listed below:

  • epochs: 3
  • learning_rate: 5e-5
  • batch_size: 256
  • max_grad_norm: 1.0
  • weight_decay: 0.001
  • lr_scheduler_type: "cosine"
  • warmup_ratio: 0.03

Dataset

math_QA dataset is prepared as combination of MetaMathQA and MathInstruct, and some internal data. Refer math_QAaugP

Model Usage

import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer
)
from peft import PeftModel

model_path = "mistralai/Mistral-7B-v0.1"
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype = torch.float16,
    device_map = {"": 0},
)

# Load LoRA and merge
model = PeftModel.from_pretrained(model, "adityasihag/math_QA-Mistral-7B-QLoRA-adapter")
model = model.merge_and_unload()

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token

question = """Solve the linear equations. $3(x+2)-x=x + 9$. Find the value of x."""

sample_input = f"""Question: {question} \n Answer: """

sample_input_tokenised = tokenizer(sample_input, return_tensors = "pt").to("cuda")

generated_ids = model.generate(
                    **sample_input_tokenised,
                    max_new_tokens = 1024,
                    temperature = 0.3
                )
output = tokenizer.decode(generated_ids[0], skip_special_tokens = True)
print(output)
Sample Input:
Question: Solve the linear equations. $3(x+2)-x=x + 9$. Find the value of x. \n Answer: 
Model Output:
Given the linear equation 3(x+2)-x=x+9. 
First, distribute the 3 in the brackets to get 3x + 6 - x = x + 9. 
Simplify the equation to get 2x + 6 = x + 9. 
Next, transpose x from the right side to the left side and from the left side to the right side to get x = 9 - 6. 
Finally, solve for x to get x = 3.

Prompt Template:

Question: <question>
Answer: 

Comparing math_QA models with other SFT LLM models

Model GSM8k Pass@1 MATH Pass@1
LLaMA-2-7B 14.6 2.5
gemma-2b 17.7
LLaMA-2-13B 28.7 3.9
LLaMA-2-34B 42.2 6.24
math_QA-gemma-2B 43.66
gemma-7b 46.4
WizardMath-7B 54.9 10.7
Mistral-7B 35.4
WizardMath-13B 63.9 14.0
MetaMath-7B 66.5 19.8
MetaMath-13B 72.3 22.4
math_QA-Mistral-7B 75.81
Arithmo2-Mistral-7B 76.4 27.2
MetaMath-Mistral-7B 77.7 28.2
DeepSeekMath-Instruct-7B 82.9 46.8
GPT4 92.0 52.9
Downloads last month
14
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for adityasihag/math_QA-Mistral-7B-QLoRA-adapter

Adapter
(1238)
this model

Dataset used to train adityasihag/math_QA-Mistral-7B-QLoRA-adapter