2504v2 / README.md
adriansanz's picture
End of training
0ed21e4 verified
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 2504v2
    results: []

2504v2

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6769
  • Accuracy: 0.8655
  • Precision: 0.8660
  • Recall: 0.8655
  • F1: 0.8655
  • Ratio: 0.5168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 10
  • label_smoothing_factor: 0.2

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
4.1824 0.3896 10 2.4179 0.5084 0.3727 0.3389 0.3212 0.7479
1.997 0.7792 20 1.6877 0.5462 0.5489 0.5462 0.5398 0.3824
1.4096 1.1688 30 1.2832 0.5924 0.5939 0.5924 0.5908 0.5630
1.1296 1.5584 40 1.1040 0.6176 0.6187 0.6176 0.6168 0.5462
1.0408 1.9481 50 0.9666 0.7227 0.7292 0.7227 0.7207 0.5840
0.9242 2.3377 60 0.8829 0.7815 0.7816 0.7815 0.7815 0.4916
0.8948 2.7273 70 0.8146 0.7899 0.7940 0.7899 0.7892 0.4412
0.842 3.1169 80 0.7745 0.7941 0.8101 0.7941 0.7914 0.6134
0.7715 3.5065 90 0.7244 0.8277 0.8279 0.8277 0.8277 0.4874
0.7361 3.8961 100 0.7224 0.8151 0.8243 0.8151 0.8138 0.5840
0.7115 4.2857 110 0.7004 0.8403 0.8407 0.8403 0.8403 0.5168
0.7076 4.6753 120 0.6940 0.8403 0.8407 0.8403 0.8403 0.4832
0.7026 5.0649 130 0.6936 0.8487 0.8491 0.8487 0.8487 0.5168
0.6717 5.4545 140 0.6912 0.8571 0.8581 0.8571 0.8571 0.4748
0.7166 5.8442 150 0.6867 0.8571 0.8575 0.8571 0.8571 0.5168
0.6606 6.2338 160 0.6812 0.8613 0.8616 0.8613 0.8613 0.4874
0.6939 6.6234 170 0.6747 0.8613 0.8614 0.8613 0.8613 0.4958
0.6609 7.0130 180 0.6744 0.8613 0.8616 0.8613 0.8613 0.5126
0.6388 7.4026 190 0.6790 0.8529 0.8532 0.8529 0.8529 0.5126
0.6435 7.7922 200 0.6840 0.8571 0.8572 0.8571 0.8571 0.5084
0.6534 8.1818 210 0.6828 0.8571 0.8571 0.8571 0.8571 0.5
0.6552 8.5714 220 0.6818 0.8655 0.8660 0.8655 0.8655 0.5168
0.646 8.9610 230 0.6788 0.8655 0.8660 0.8655 0.8655 0.5168
0.6443 9.3506 240 0.6770 0.8655 0.8660 0.8655 0.8655 0.5168
0.6418 9.7403 250 0.6769 0.8655 0.8660 0.8655 0.8655 0.5168

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1