2504v3

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6951
  • Accuracy: 0.8487
  • Precision: 0.8488
  • Recall: 0.8487
  • F1: 0.8487
  • Ratio: 0.4916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
5.617 0.1626 10 5.2818 0.1471 0.4233 0.0980 0.1518 0.1891
2.9819 0.3252 20 1.8921 0.5462 0.3817 0.3641 0.3655 0.6134
1.4506 0.4878 30 1.3671 0.5378 0.5459 0.5378 0.5165 0.2899
1.112 0.6504 40 0.8974 0.6261 0.6268 0.6261 0.6255 0.4622
0.872 0.8130 50 0.7909 0.7017 0.7320 0.7017 0.6916 0.6807
0.8282 0.9756 60 0.7232 0.7605 0.7614 0.7605 0.7603 0.4706
0.7528 1.1382 70 0.6917 0.7647 0.7654 0.7647 0.7646 0.5252
0.7292 1.3008 80 0.6830 0.7773 0.7789 0.7773 0.7770 0.5378
0.6003 1.4634 90 0.6686 0.7857 0.7968 0.7857 0.7837 0.5966
0.6511 1.6260 100 0.6301 0.8067 0.8071 0.8067 0.8067 0.5168
0.5804 1.7886 110 0.6498 0.7983 0.8004 0.7983 0.7980 0.4580
0.6096 1.9512 120 0.6107 0.8151 0.8152 0.8151 0.8151 0.5084
0.6082 2.1138 130 0.6035 0.8277 0.8283 0.8277 0.8277 0.4790
0.5099 2.2764 140 0.6308 0.8151 0.8155 0.8151 0.8151 0.5168
0.5049 2.4390 150 0.6372 0.8361 0.8381 0.8361 0.8359 0.5378
0.4987 2.6016 160 0.6228 0.8445 0.8446 0.8445 0.8445 0.5042
0.6128 2.7642 170 0.6122 0.8487 0.8488 0.8487 0.8487 0.4916
0.5384 2.9268 180 0.6065 0.8277 0.8346 0.8277 0.8268 0.5714
0.4899 3.0894 190 0.6652 0.8151 0.8195 0.8151 0.8145 0.4412
0.4299 3.2520 200 0.6596 0.8487 0.8512 0.8487 0.8485 0.5420
0.4523 3.4146 210 0.7557 0.8067 0.8110 0.8067 0.8061 0.4412
0.4542 3.5772 220 0.6954 0.8277 0.8283 0.8277 0.8277 0.4790
0.4587 3.7398 230 0.6812 0.8319 0.8323 0.8319 0.8319 0.4832
0.4816 3.9024 240 0.6309 0.8613 0.8634 0.8613 0.8611 0.5378
0.4866 4.0650 250 0.6423 0.8487 0.8503 0.8487 0.8486 0.5336
0.363 4.2276 260 0.6763 0.8445 0.8448 0.8445 0.8445 0.5126
0.399 4.3902 270 0.7227 0.8361 0.8367 0.8361 0.8361 0.4790
0.3862 4.5528 280 0.6777 0.8445 0.8448 0.8445 0.8445 0.5126
0.4815 4.7154 290 0.6559 0.8529 0.8532 0.8529 0.8529 0.5126
0.4548 4.8780 300 0.6757 0.8403 0.8451 0.8403 0.8398 0.4412
0.3675 5.0407 310 0.6526 0.8487 0.8491 0.8487 0.8487 0.5168
0.3626 5.2033 320 0.6815 0.8529 0.8532 0.8529 0.8529 0.5126
0.4256 5.3659 330 0.6904 0.8529 0.8532 0.8529 0.8529 0.4874
0.4515 5.5285 340 0.6561 0.8487 0.8496 0.8487 0.8486 0.5252
0.3661 5.6911 350 0.6681 0.8487 0.8491 0.8487 0.8487 0.5168
0.3792 5.8537 360 0.6740 0.8487 0.8487 0.8487 0.8487 0.5
0.4327 6.0163 370 0.6649 0.8487 0.8487 0.8487 0.8487 0.5
0.3426 6.1789 380 0.6462 0.8487 0.8503 0.8487 0.8486 0.5336
0.3329 6.3415 390 0.6767 0.8529 0.8550 0.8529 0.8527 0.5378
0.415 6.5041 400 0.7001 0.8445 0.8448 0.8445 0.8445 0.4874
0.388 6.6667 410 0.7217 0.8445 0.8457 0.8445 0.8444 0.4706
0.3585 6.8293 420 0.7232 0.8445 0.8457 0.8445 0.8444 0.4706
0.3657 6.9919 430 0.6943 0.8487 0.8496 0.8487 0.8486 0.4748
0.3366 7.1545 440 0.6999 0.8529 0.8536 0.8529 0.8529 0.4790
0.3497 7.3171 450 0.6797 0.8613 0.8614 0.8613 0.8613 0.5042
0.3219 7.4797 460 0.6905 0.8487 0.8496 0.8487 0.8486 0.5252
0.3459 7.6423 470 0.6872 0.8613 0.8614 0.8613 0.8613 0.5042
0.3669 7.8049 480 0.6941 0.8529 0.8536 0.8529 0.8529 0.4790
0.3888 7.9675 490 0.7014 0.8487 0.8496 0.8487 0.8486 0.4748
0.2989 8.1301 500 0.6951 0.8487 0.8488 0.8487 0.8487 0.4916
0.3743 8.2927 510 0.7026 0.8487 0.8488 0.8487 0.8487 0.4916
0.3086 8.4553 520 0.7182 0.8529 0.8532 0.8529 0.8529 0.4874
0.3251 8.6179 530 0.7135 0.8529 0.8532 0.8529 0.8529 0.4874

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/2504v3

Finetuned
(30)
this model