|
--- |
|
base_model: projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base |
|
datasets: [] |
|
language: |
|
- ca |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:4173 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'Queixa: Deixar constància de la vostra disconformitat per un mal |
|
servei (un tracte inapropiat, un temps d''espera excessiu, etc.), sense demanar |
|
cap indemnització.' |
|
sentences: |
|
- Quin és el format de sortida del tràmit de baixa de la llicència de gual? |
|
- Quin és el tipus de venda que es realitza en els mercats setmanals? |
|
- Quin és el paper de la queixa en la resolució de conflictes? |
|
- source_sentence: L'empleat que en l'exercici de les seves tasques tingui assignada |
|
la funció de conducció de vehicles municipals, pot sol·licitar un ajut per les |
|
despeses ocasionades per a la renovació del carnet de conduir (certificat mèdic |
|
i administratiu). |
|
sentences: |
|
- Quin és el resultat esperat de les escoles que reben les subvencions? |
|
- Quin és el requisit per obtenir una autorització d'estacionament? |
|
- Quin és el requisit per a sol·licitar l'ajut social? |
|
- source_sentence: Aportació de documentació. Subvencions per finançar despeses d'hipoteca, |
|
subministrament i altres serveis i la manca d'ingressos de lloguer de les entitats |
|
culturals |
|
sentences: |
|
- Quin és el propòsit de la documentació? |
|
- Quin és el paper del públic assistent en el Ple Municipal? |
|
- Quin és el paper de l'ajuntament en la renovació del carnet de persona cuidadora? |
|
- source_sentence: la Fira de la Vila del Llibre de Sitges consistent en un conjunt |
|
de parades instal·lades al Passeig Marítim |
|
sentences: |
|
- Quin és el paper de la llicència de parcel·lació en la construcció d'edificacions? |
|
- Quin és l'objectiu del tràmit de participació en processos de selecció de personal |
|
de l'Ajuntament? |
|
- Quin és el lloc on es desenvolupa la Fira de la Vila del Llibre de Sitges? |
|
- source_sentence: Mitjançant aquest tràmit la persona interessada posa en coneixement |
|
de l'Ajuntament de Sitges l'inici d'un espectacle públic o activitat recreativa |
|
de caràcter extraordinari... |
|
sentences: |
|
- Quin és el paper de la persona interessada en la llicència per a espectacles públics |
|
o activitats recreatives de caràcter extraordinari? |
|
- Quin és el paper del Registre de Sol·licitants d'Habitatge amb Protecció Oficial |
|
en la gestió d'habitatges? |
|
- Quin és el tipus de familiars que es tenen en compte per l'ajut especial? |
|
model-index: |
|
- name: BGE SITGES CAT |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.15732758620689655 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.21767241379310345 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.39439655172413796 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.05244252873563218 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.043534482758620686 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.03943965517241379 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.15732758620689655 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.21767241379310345 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.39439655172413796 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.20125893142070614 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.14385604816639316 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.17098930660026063 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.15086206896551724 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.21767241379310345 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.39439655172413796 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.050287356321839075 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.04353448275862069 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.03943965517241379 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.15086206896551724 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.21767241379310345 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.39439655172413796 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2016207682773376 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.14438799945265474 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.1715919733142084 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.14870689655172414 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.21120689655172414 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.40086206896551724 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.04956896551724138 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.04224137931034483 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.04008620689655173 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.07327586206896551 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.14870689655172414 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.21120689655172414 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.40086206896551724 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2021149795452301 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.1433856732348113 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.16973847535400444 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.06896551724137931 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.14655172413793102 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.21767241379310345 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.38146551724137934 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.06896551724137931 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.048850574712643674 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.04353448275862069 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.03814655172413793 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.06896551724137931 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.14655172413793102 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.21767241379310345 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.38146551724137934 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.19535554125135882 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.1398416119321293 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.16597320243564267 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.05603448275862069 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.13793103448275862 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.1939655172413793 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.36853448275862066 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.05603448275862069 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.04597701149425287 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.03879310344827586 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.03685344827586207 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.05603448275862069 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.13793103448275862 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.1939655172413793 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.36853448275862066 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.18225870966588442 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.12688492063492074 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.15425908300208627 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE SITGES CAT |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base](https://huggingface.co/projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base) <!-- at revision 3354aea2cb9d91091495e9f1e1241b488f32e47c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** ca |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("adriansanz/SITGES-aina4") |
|
# Run inference |
|
sentences = [ |
|
"Mitjançant aquest tràmit la persona interessada posa en coneixement de l'Ajuntament de Sitges l'inici d'un espectacle públic o activitat recreativa de caràcter extraordinari...", |
|
'Quin és el paper de la persona interessada en la llicència per a espectacles públics o activitats recreatives de caràcter extraordinari?', |
|
"Quin és el paper del Registre de Sol·licitants d'Habitatge amb Protecció Oficial en la gestió d'habitatges?", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.0733 | |
|
| cosine_accuracy@3 | 0.1573 | |
|
| cosine_accuracy@5 | 0.2177 | |
|
| cosine_accuracy@10 | 0.3944 | |
|
| cosine_precision@1 | 0.0733 | |
|
| cosine_precision@3 | 0.0524 | |
|
| cosine_precision@5 | 0.0435 | |
|
| cosine_precision@10 | 0.0394 | |
|
| cosine_recall@1 | 0.0733 | |
|
| cosine_recall@3 | 0.1573 | |
|
| cosine_recall@5 | 0.2177 | |
|
| cosine_recall@10 | 0.3944 | |
|
| cosine_ndcg@10 | 0.2013 | |
|
| cosine_mrr@10 | 0.1439 | |
|
| **cosine_map@100** | **0.171** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0733 | |
|
| cosine_accuracy@3 | 0.1509 | |
|
| cosine_accuracy@5 | 0.2177 | |
|
| cosine_accuracy@10 | 0.3944 | |
|
| cosine_precision@1 | 0.0733 | |
|
| cosine_precision@3 | 0.0503 | |
|
| cosine_precision@5 | 0.0435 | |
|
| cosine_precision@10 | 0.0394 | |
|
| cosine_recall@1 | 0.0733 | |
|
| cosine_recall@3 | 0.1509 | |
|
| cosine_recall@5 | 0.2177 | |
|
| cosine_recall@10 | 0.3944 | |
|
| cosine_ndcg@10 | 0.2016 | |
|
| cosine_mrr@10 | 0.1444 | |
|
| **cosine_map@100** | **0.1716** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.0733 | |
|
| cosine_accuracy@3 | 0.1487 | |
|
| cosine_accuracy@5 | 0.2112 | |
|
| cosine_accuracy@10 | 0.4009 | |
|
| cosine_precision@1 | 0.0733 | |
|
| cosine_precision@3 | 0.0496 | |
|
| cosine_precision@5 | 0.0422 | |
|
| cosine_precision@10 | 0.0401 | |
|
| cosine_recall@1 | 0.0733 | |
|
| cosine_recall@3 | 0.1487 | |
|
| cosine_recall@5 | 0.2112 | |
|
| cosine_recall@10 | 0.4009 | |
|
| cosine_ndcg@10 | 0.2021 | |
|
| cosine_mrr@10 | 0.1434 | |
|
| **cosine_map@100** | **0.1697** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.069 | |
|
| cosine_accuracy@3 | 0.1466 | |
|
| cosine_accuracy@5 | 0.2177 | |
|
| cosine_accuracy@10 | 0.3815 | |
|
| cosine_precision@1 | 0.069 | |
|
| cosine_precision@3 | 0.0489 | |
|
| cosine_precision@5 | 0.0435 | |
|
| cosine_precision@10 | 0.0381 | |
|
| cosine_recall@1 | 0.069 | |
|
| cosine_recall@3 | 0.1466 | |
|
| cosine_recall@5 | 0.2177 | |
|
| cosine_recall@10 | 0.3815 | |
|
| cosine_ndcg@10 | 0.1954 | |
|
| cosine_mrr@10 | 0.1398 | |
|
| **cosine_map@100** | **0.166** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.056 | |
|
| cosine_accuracy@3 | 0.1379 | |
|
| cosine_accuracy@5 | 0.194 | |
|
| cosine_accuracy@10 | 0.3685 | |
|
| cosine_precision@1 | 0.056 | |
|
| cosine_precision@3 | 0.046 | |
|
| cosine_precision@5 | 0.0388 | |
|
| cosine_precision@10 | 0.0369 | |
|
| cosine_recall@1 | 0.056 | |
|
| cosine_recall@3 | 0.1379 | |
|
| cosine_recall@5 | 0.194 | |
|
| cosine_recall@10 | 0.3685 | |
|
| cosine_ndcg@10 | 0.1823 | |
|
| cosine_mrr@10 | 0.1269 | |
|
| **cosine_map@100** | **0.1543** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 6 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 6 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.3065 | 5 | 3.3947 | - | - | - | - | - | - | |
|
| 0.6130 | 10 | 2.6401 | - | - | - | - | - | - | |
|
| 0.9195 | 15 | 2.0152 | - | - | - | - | - | - | |
|
| 0.9808 | 16 | - | 1.3404 | 0.1639 | 0.1577 | 0.1694 | 0.1503 | 0.1638 | |
|
| 1.2261 | 20 | 1.4542 | - | - | - | - | - | - | |
|
| 1.5326 | 25 | 1.0135 | - | - | - | - | - | - | |
|
| 1.8391 | 30 | 0.8437 | - | - | - | - | - | - | |
|
| 1.9617 | 32 | - | 0.9436 | 0.1556 | 0.1596 | 0.1600 | 0.1467 | 0.1701 | |
|
| 2.1456 | 35 | 0.7676 | - | - | - | - | - | - | |
|
| 2.4521 | 40 | 0.5126 | - | - | - | - | - | - | |
|
| 2.7586 | 45 | 0.4358 | - | - | - | - | - | - | |
|
| 2.9425 | 48 | - | 0.7852 | 0.1650 | 0.1693 | 0.1720 | 0.1511 | 0.1686 | |
|
| 3.0651 | 50 | 0.4192 | - | - | - | - | - | - | |
|
| 3.3716 | 55 | 0.3429 | - | - | - | - | - | - | |
|
| 3.6782 | 60 | 0.3025 | - | - | - | - | - | - | |
|
| 3.9847 | 65 | 0.2863 | 0.7401 | 0.1646 | 0.1706 | 0.1759 | 0.1480 | 0.1694 | |
|
| 4.2912 | 70 | 0.2474 | - | - | - | - | - | - | |
|
| 4.5977 | 75 | 0.2324 | - | - | - | - | - | - | |
|
| 4.9042 | 80 | 0.2344 | - | - | - | - | - | - | |
|
| 4.9655 | 81 | - | 0.7217 | 0.1663 | 0.1699 | 0.1767 | 0.1512 | 0.1696 | |
|
| 5.2107 | 85 | 0.2181 | - | - | - | - | - | - | |
|
| 5.5172 | 90 | 0.2116 | - | - | - | - | - | - | |
|
| 5.8238 | 95 | 0.1926 | - | - | - | - | - | - | |
|
| **5.8851** | **96** | **-** | **0.7154** | **0.166** | **0.1697** | **0.1716** | **0.1543** | **0.171** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.3 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |