adriansanz's picture
Add new SentenceTransformer model.
2b06937 verified
metadata
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:5175
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Caldrà executar l'obra comunicada prèviament d'acord amb les condicions
      específiques que es contenen en el model normalitzat CT02.
    sentences:
      - >-
        Quin és el propòsit de la instal·lació d'un circ sense animals a la via
        pública?
      - Quin és el destinatari de les dades bloquejades?
      - Quin és el format de presentació de la comunicació prèvia?
  - source_sentence: >-
      Armes utilitzables en activitats lúdico-esportives d’airsoft i
      paintball...
    sentences:
      - Quin és el paper de l'AFA en la venda de llibres?
      - Quin és el benefici de tenir dades personals correctes?
      - >-
        Quin és el tipus d'activitats que es poden practicar amb les armes de 4a
        categoria?
  - source_sentence: >-
      En les activitats sotmeses al règim d’autorització ambiental o llicència
      municipal d’activitat (Annex I o Annex II de la Llei 20/2009) cal demanar
      aquest certificat previ a la presentació de la sol·licitud d’autorització
      ambiental o llicència municipal.
    sentences:
      - >-
        Quin és el benefici de tenir el certificat de compatibilitat urbanística
        en les activitats sotmeses a llicència municipal d’activitat?
      - Com puc controlar la recepció de propaganda electoral per correu?
      - >-
        Quin és el benefici de la cessió d'un compostador domèstic per a
        l'entorn?
  - source_sentence: >-
      La persona interessada posa en coneixement de l’Administració, les
      actuacions urbanístiques que pretén dur a terme consistents en
      l'apuntalament o reforç provisional d'estructures existents fins a la
      intervenció definitiva.
    sentences:
      - Qui pot participar en el Consell d'Adolescents?
      - Quin és el resultat de la presentació de la comunicació prèvia?
      - >-
        Quin és el paper de la persona interessada en relació amb la presentació
        de la comunicació prèvia?
  - source_sentence: >-
      La persona consumidora presenti la reclamació davant de l'entitat
      acreditada en un termini superior a un any des de la data en què va
      presentar la reclamació a l'empresa.
    sentences:
      - >-
        Quin és el tràmit per inscriure'm al Padró d'Habitants sense tenir
        constància de la meva anterior residència?
      - >-
        Quin és el resultat de la modificació substancial de la llicència
        d'obres en relació a les autoritzacions administratives?
      - >-
        Quin és el paper de l'entitat acreditada en la tramitació d'una
        reclamació?
model-index:
  - name: SentenceTransformer based on BAAI/bge-m3
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.057391304347826085
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.15304347826086956
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.23478260869565218
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.41739130434782606
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.057391304347826085
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.051014492753623186
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.04695652173913043
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04173913043478261
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.057391304347826085
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.15304347826086956
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.23478260869565218
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.41739130434782606
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.20551130934080394
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.14188060731539
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.16516795239083046
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.05565217391304348
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.16
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.24
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.40695652173913044
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.05565217391304348
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.048
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04069565217391305
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05565217391304348
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.16
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.24
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.40695652173913044
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.20158774447839253
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.13959282263630102
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.16377775492511307
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.06956521739130435
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.16695652173913045
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.24869565217391304
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4260869565217391
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06956521739130435
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05565217391304348
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.04973913043478261
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.042608695652173914
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.06956521739130435
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.16695652173913045
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.24869565217391304
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4260869565217391
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21580306349457917
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1526128364389235
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1754746652296583
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.05565217391304348
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.16695652173913045
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.25217391304347825
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.42434782608695654
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.05565217391304348
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05565217391304348
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05043478260869566
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.042434782608695654
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.05565217391304348
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.16695652173913045
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.25217391304347825
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.42434782608695654
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2100045076980214
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.14526432022084196
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.1684764968624273
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.06086956521739131
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.1617391304347826
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.2608695652173913
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4434782608695652
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06086956521739131
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05391304347826087
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05217391304347826
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04434782608695652
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.06086956521739131
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.1617391304347826
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.2608695652173913
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4434782608695652
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21805066438366894
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.15018150448585244
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.17220421856187046
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.06086956521739131
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.15478260869565216
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.24521739130434783
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.42782608695652175
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06086956521739131
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05159420289855072
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.04904347826086957
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.042782608695652175
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.06086956521739131
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.15478260869565216
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.24521739130434783
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.42782608695652175
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21079002748958972
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.14568875086266406
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.16756200348857653
            name: Cosine Map@100

SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v4-10ep")
# Run inference
sentences = [
    "La persona consumidora presenti la reclamació davant de l'entitat acreditada en un termini superior a un any des de la data en què va presentar la reclamació a l'empresa.",
    "Quin és el paper de l'entitat acreditada en la tramitació d'una reclamació?",
    "Quin és el resultat de la modificació substancial de la llicència d'obres en relació a les autoritzacions administratives?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0574
cosine_accuracy@3 0.153
cosine_accuracy@5 0.2348
cosine_accuracy@10 0.4174
cosine_precision@1 0.0574
cosine_precision@3 0.051
cosine_precision@5 0.047
cosine_precision@10 0.0417
cosine_recall@1 0.0574
cosine_recall@3 0.153
cosine_recall@5 0.2348
cosine_recall@10 0.4174
cosine_ndcg@10 0.2055
cosine_mrr@10 0.1419
cosine_map@100 0.1652

Information Retrieval

Metric Value
cosine_accuracy@1 0.0557
cosine_accuracy@3 0.16
cosine_accuracy@5 0.24
cosine_accuracy@10 0.407
cosine_precision@1 0.0557
cosine_precision@3 0.0533
cosine_precision@5 0.048
cosine_precision@10 0.0407
cosine_recall@1 0.0557
cosine_recall@3 0.16
cosine_recall@5 0.24
cosine_recall@10 0.407
cosine_ndcg@10 0.2016
cosine_mrr@10 0.1396
cosine_map@100 0.1638

Information Retrieval

Metric Value
cosine_accuracy@1 0.0696
cosine_accuracy@3 0.167
cosine_accuracy@5 0.2487
cosine_accuracy@10 0.4261
cosine_precision@1 0.0696
cosine_precision@3 0.0557
cosine_precision@5 0.0497
cosine_precision@10 0.0426
cosine_recall@1 0.0696
cosine_recall@3 0.167
cosine_recall@5 0.2487
cosine_recall@10 0.4261
cosine_ndcg@10 0.2158
cosine_mrr@10 0.1526
cosine_map@100 0.1755

Information Retrieval

Metric Value
cosine_accuracy@1 0.0557
cosine_accuracy@3 0.167
cosine_accuracy@5 0.2522
cosine_accuracy@10 0.4243
cosine_precision@1 0.0557
cosine_precision@3 0.0557
cosine_precision@5 0.0504
cosine_precision@10 0.0424
cosine_recall@1 0.0557
cosine_recall@3 0.167
cosine_recall@5 0.2522
cosine_recall@10 0.4243
cosine_ndcg@10 0.21
cosine_mrr@10 0.1453
cosine_map@100 0.1685

Information Retrieval

Metric Value
cosine_accuracy@1 0.0609
cosine_accuracy@3 0.1617
cosine_accuracy@5 0.2609
cosine_accuracy@10 0.4435
cosine_precision@1 0.0609
cosine_precision@3 0.0539
cosine_precision@5 0.0522
cosine_precision@10 0.0443
cosine_recall@1 0.0609
cosine_recall@3 0.1617
cosine_recall@5 0.2609
cosine_recall@10 0.4435
cosine_ndcg@10 0.2181
cosine_mrr@10 0.1502
cosine_map@100 0.1722

Information Retrieval

Metric Value
cosine_accuracy@1 0.0609
cosine_accuracy@3 0.1548
cosine_accuracy@5 0.2452
cosine_accuracy@10 0.4278
cosine_precision@1 0.0609
cosine_precision@3 0.0516
cosine_precision@5 0.049
cosine_precision@10 0.0428
cosine_recall@1 0.0609
cosine_recall@3 0.1548
cosine_recall@5 0.2452
cosine_recall@10 0.4278
cosine_ndcg@10 0.2108
cosine_mrr@10 0.1457
cosine_map@100 0.1676

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,175 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 5 tokens
    • mean: 43.23 tokens
    • max: 117 tokens
    • min: 10 tokens
    • mean: 20.25 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Aquest tràmit us permet consultar informació de les anotacions d'entrada i sortida que hi consten al registre de l'Ajuntament de Sant Quirze del Vallès. Quin és el format de les dades de sortida del tràmit?
    Tràmit a través del qual la persona interessada posa en coneixement de l’Ajuntament la voluntat de: ... Renunciar a una llicència prèviament atorgada. Quin és el resultat de la renúncia a una llicència urbanística prèviament atorgada?
    D’acord amb el plànol d'ubicació de parades: Mercat de diumenges a Les Fonts Quin és el plànol d'ubicació de parades del mercat de diumenges a Les Fonts?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4938 10 4.1082 - - - - - -
0.9877 20 3.2445 0.1490 0.1440 0.1466 0.1546 0.1249 0.1521
1.4815 30 1.9296 - - - - - -
1.9753 40 1.7067 0.1607 0.1548 0.1567 0.1648 0.1448 0.1593
2.4691 50 0.9578 - - - - - -
2.9630 60 1.003 0.1640 0.1699 0.1660 0.1695 0.1568 0.1592
3.4568 70 0.6298 - - - - - -
3.9506 80 0.7035 - - - - - -
4.0 81 - 0.1707 0.1657 0.1769 0.1690 0.1610 0.1719
4.4444 90 0.4606 - - - - - -
4.9383 100 0.5131 - - - - - -
4.9877 101 - 0.1645 0.1686 0.1669 0.1620 0.1580 0.1722
5.4321 110 0.3748 - - - - - -
5.9259 120 0.4799 - - - - - -
5.9753 121 - 0.1670 0.1670 0.1725 0.1711 0.1628 0.1715
6.4198 130 0.3237 - - - - - -
6.9136 140 0.4132 - - - - - -
6.963 141 - 0.1746 0.1757 0.1697 0.1746 0.1655 0.1746
7.4074 150 0.3169 - - - - - -
7.9012 160 0.3438 - - - - - -
8.0 162 - 0.1692 0.1698 0.1718 0.1735 0.1707 0.1656
8.3951 170 0.2987 - - - - - -
8.8889 180 0.3193 - - - - - -
8.9877 182 - 0.1703 0.1703 0.1695 0.1710 0.1619 0.1666
9.3827 190 0.2883 - - - - - -
9.8765 200 0.3098 0.1652 0.1722 0.1685 0.1755 0.1676 0.1638
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.35.0.dev0
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}