SetFit with projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses projecte-aina/ST-NLI-ca_paraphrase-multilingual-mpnet-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Quin és el benefici de la devolució de fiances i avals?'
  • 'Bon dia, quin és el procediment per obtenir la llicència?'
  • 'Hola Bon dia, vull saber quin és el benefici de la devolució de fiances i avals.'
1
  • 'Ei, què tal? Com va tot?'
  • "Bon dia, m'agradaria saber més sobre els tràmits disponibles."
  • 'Ei, com et va?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("adriansanz/gret3")
# Run inference
preds = model("Hola!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 10.0083 17
Label Training Sample Count
0 60
1 60

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • evaluation_strategy: epoch
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0022 1 0.2716 -
0.1092 50 0.1656 -
0.2183 100 0.0068 -
0.3275 150 0.0003 -
0.4367 200 0.0002 -
0.5459 250 0.0001 -
0.6550 300 0.0001 -
0.7642 350 0.0001 -
0.8734 400 0.0001 -
0.9825 450 0.0001 -
1.0 458 - 0.0002
0.0022 1 0.0001 -
0.1092 50 0.0001 -
0.2183 100 0.0001 -
0.3275 150 0.0016 -
0.4367 200 0.0002 -
0.5459 250 0.0 -
0.6550 300 0.0 -
0.7642 350 0.0 -
0.8734 400 0.0 -
0.9825 450 0.0 -
1.0 458 - 0.0001
1.0917 500 0.0 -
1.2009 550 0.0 -
1.3100 600 0.0 -
1.4192 650 0.0 -
1.5284 700 0.0 -
1.6376 750 0.0 -
1.7467 800 0.0 -
1.8559 850 0.0 -
1.9651 900 0.0 -
2.0 916 - 0.0000

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.1
  • Transformers: 4.42.2
  • PyTorch: 2.5.0+cu121
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
17
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/gret3