BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sitges2608")
# Run inference
sentences = [
    'El termini per a la presentació de les sol·licituds de modificació del projecte o activitat subvencionat és de 15 dies naturals abans de la finalització del projecte o activitat.',
    'Quin és el termini per a la presentació de les sol·licituds de modificació del projecte o activitat subvencionat?',
    "Quin és el registre on es troben les dades d'inscripció?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0625
cosine_accuracy@3 0.1164
cosine_accuracy@5 0.181
cosine_accuracy@10 0.3556
cosine_precision@1 0.0625
cosine_precision@3 0.0388
cosine_precision@5 0.0362
cosine_precision@10 0.0356
cosine_recall@1 0.0625
cosine_recall@3 0.1164
cosine_recall@5 0.181
cosine_recall@10 0.3556
cosine_ndcg@10 0.1755
cosine_mrr@10 0.1225
cosine_map@100 0.1488

Information Retrieval

Metric Value
cosine_accuracy@1 0.0625
cosine_accuracy@3 0.1099
cosine_accuracy@5 0.1703
cosine_accuracy@10 0.3556
cosine_precision@1 0.0625
cosine_precision@3 0.0366
cosine_precision@5 0.0341
cosine_precision@10 0.0356
cosine_recall@1 0.0625
cosine_recall@3 0.1099
cosine_recall@5 0.1703
cosine_recall@10 0.3556
cosine_ndcg@10 0.1728
cosine_mrr@10 0.1193
cosine_map@100 0.1455

Information Retrieval

Metric Value
cosine_accuracy@1 0.056
cosine_accuracy@3 0.1228
cosine_accuracy@5 0.1724
cosine_accuracy@10 0.3405
cosine_precision@1 0.056
cosine_precision@3 0.0409
cosine_precision@5 0.0345
cosine_precision@10 0.0341
cosine_recall@1 0.056
cosine_recall@3 0.1228
cosine_recall@5 0.1724
cosine_recall@10 0.3405
cosine_ndcg@10 0.168
cosine_mrr@10 0.1168
cosine_map@100 0.1431

Information Retrieval

Metric Value
cosine_accuracy@1 0.0517
cosine_accuracy@3 0.1142
cosine_accuracy@5 0.1832
cosine_accuracy@10 0.319
cosine_precision@1 0.0517
cosine_precision@3 0.0381
cosine_precision@5 0.0366
cosine_precision@10 0.0319
cosine_recall@1 0.0517
cosine_recall@3 0.1142
cosine_recall@5 0.1832
cosine_recall@10 0.319
cosine_ndcg@10 0.1589
cosine_mrr@10 0.1112
cosine_map@100 0.1376

Information Retrieval

Metric Value
cosine_accuracy@1 0.0453
cosine_accuracy@3 0.1056
cosine_accuracy@5 0.1659
cosine_accuracy@10 0.306
cosine_precision@1 0.0453
cosine_precision@3 0.0352
cosine_precision@5 0.0332
cosine_precision@10 0.0306
cosine_recall@1 0.0453
cosine_recall@3 0.1056
cosine_recall@5 0.1659
cosine_recall@10 0.306
cosine_ndcg@10 0.149
cosine_mrr@10 0.1024
cosine_map@100 0.1259

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,173 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 66.25 tokens
    • max: 165 tokens
    • min: 12 tokens
    • mean: 28.12 tokens
    • max: 62 tokens
  • Samples:
    positive anchor
    La persona titular d'una llicència de vehicle lleuger per al servei públic (auto-taxi), en produïr-se un canvi de vehicle, ha de notificar a l'Ajuntament les dades del nou vehicle. Quin és el propòsit de la notificació de les dades del nou vehicle?
    S'entén per garantia l'ingrés a la Tresoreria de l'Ajuntament d'una quantitat econòmica que garanteix el compliment d'una obligació adquirida amb aquest (garanties de concursos o licitacions, fraccionaments de tributs en via executiva, reposició de paviments per obres, etc.). Què s'entén per garantia a l'Ajuntament de Sitges?
    L'ús d'espais del Centre Cultural Miramar per a la realització d'exposicions. Quin és el centre cultural on es poden realitzar les exposicions d'art?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.9771 8 - 0.1210 0.1384 0.1341 0.1002 0.1376
1.2137 10 7.5469 - - - - -
1.9466 16 - 0.136 0.1404 0.1443 0.1249 0.1414
2.4275 20 4.0024 - - - - -
2.9160 24 - 0.1388 0.1460 0.1446 0.1278 0.1436
3.6412 30 3.2149 - - - - -
3.8855 32 - 0.1376 0.1431 0.1455 0.1259 0.1488
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.34.0.dev0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
18
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/sitges2608

Finetuned
(310)
this model

Evaluation results