te-zsc-authentic / README.md
adriansanz's picture
End of training
9800b89 verified
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: AUTH_300524_epoch_4
    results: []

AUTH_300524_epoch_4

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4656
  • Accuracy: 0.9038
  • Precision: 0.9047
  • Recall: 0.9038
  • F1: 0.9038
  • Ratio: 0.4760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 47
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.4294 0.0354 10 0.5003 0.9018 0.9020 0.9018 0.9018 0.5100
0.386 0.0708 20 0.5308 0.8938 0.8952 0.8938 0.8937 0.4699
0.4424 0.1062 30 0.4881 0.8998 0.9000 0.8998 0.8998 0.4900
0.42 0.1416 40 0.4916 0.9068 0.9091 0.9068 0.9067 0.4629
0.418 0.1770 50 0.4905 0.8968 0.8968 0.8968 0.8968 0.4950
0.4402 0.2124 60 0.5034 0.8988 0.9027 0.8988 0.8986 0.4509
0.4141 0.2478 70 0.5085 0.9028 0.9061 0.9028 0.9026 0.4549
0.4836 0.2832 80 0.4875 0.9028 0.9029 0.9028 0.9028 0.4910
0.4361 0.3186 90 0.4876 0.8998 0.8998 0.8998 0.8998 0.4980
0.45 0.3540 100 0.4985 0.8938 0.8938 0.8938 0.8938 0.5040
0.4648 0.3894 110 0.5236 0.8858 0.8954 0.8858 0.8851 0.4218
0.4714 0.4248 120 0.5009 0.8888 0.8888 0.8888 0.8888 0.5010
0.4628 0.4602 130 0.4971 0.8868 0.8871 0.8868 0.8867 0.4850
0.4513 0.4956 140 0.4971 0.8968 0.9003 0.8968 0.8966 0.4529
0.4905 0.5310 150 0.4873 0.8938 0.8969 0.8938 0.8936 0.4559
0.4875 0.5664 160 0.4760 0.8948 0.8948 0.8948 0.8948 0.4950
0.4593 0.6018 170 0.4818 0.8918 0.8918 0.8918 0.8918 0.4960
0.403 0.6372 180 0.4927 0.8928 0.8936 0.8928 0.8927 0.4770
0.4838 0.6726 190 0.5039 0.8958 0.9001 0.8958 0.8955 0.4479
0.4512 0.7080 200 0.4913 0.8978 0.9009 0.8978 0.8976 0.4559
0.4415 0.7434 210 0.4874 0.8988 0.8989 0.8988 0.8988 0.4930
0.5317 0.7788 220 0.4786 0.9018 0.9021 0.9018 0.9018 0.4860
0.4718 0.8142 230 0.4746 0.9008 0.9041 0.9008 0.9006 0.4549
0.473 0.8496 240 0.4686 0.9028 0.9044 0.9028 0.9027 0.4689
0.499 0.8850 250 0.4689 0.9028 0.9031 0.9028 0.9028 0.4870
0.5655 0.9204 260 0.4661 0.9068 0.9074 0.9068 0.9068 0.4810
0.4583 0.9558 270 0.4654 0.9048 0.9057 0.9048 0.9048 0.4770
0.4734 0.9912 280 0.4656 0.9038 0.9047 0.9038 0.9038 0.4760

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1