metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: SYN_300524_epoch_2
results: []
SYN_300524_epoch_2
This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3618
- Accuracy: 0.972
- Precision: 0.9723
- Recall: 0.972
- F1: 0.9720
- Ratio: 0.488
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
---|---|---|---|---|---|---|---|---|
0.3977 | 0.0533 | 10 | 0.3957 | 0.951 | 0.9530 | 0.9510 | 0.9509 | 0.467 |
0.4006 | 0.1067 | 20 | 0.3771 | 0.96 | 0.9609 | 0.96 | 0.9600 | 0.478 |
0.3774 | 0.16 | 30 | 0.3709 | 0.963 | 0.9632 | 0.963 | 0.9630 | 0.491 |
0.3894 | 0.2133 | 40 | 0.3956 | 0.958 | 0.9592 | 0.958 | 0.9580 | 0.474 |
0.3423 | 0.2667 | 50 | 0.3938 | 0.96 | 0.9606 | 0.96 | 0.9600 | 0.482 |
0.3965 | 0.32 | 60 | 0.3794 | 0.959 | 0.9597 | 0.959 | 0.9590 | 0.481 |
0.3998 | 0.3733 | 70 | 0.3602 | 0.967 | 0.9670 | 0.967 | 0.9670 | 0.497 |
0.3718 | 0.4267 | 80 | 0.3998 | 0.956 | 0.9576 | 0.956 | 0.9560 | 0.47 |
0.3924 | 0.48 | 90 | 0.3829 | 0.963 | 0.9638 | 0.963 | 0.9630 | 0.479 |
0.371 | 0.5333 | 100 | 0.3816 | 0.966 | 0.9666 | 0.966 | 0.9660 | 0.482 |
0.3752 | 0.5867 | 110 | 0.3727 | 0.967 | 0.9675 | 0.967 | 0.9670 | 0.483 |
0.3631 | 0.64 | 120 | 0.3669 | 0.966 | 0.9665 | 0.966 | 0.9660 | 0.484 |
0.3934 | 0.6933 | 130 | 0.3641 | 0.968 | 0.9684 | 0.968 | 0.9680 | 0.486 |
0.3536 | 0.7467 | 140 | 0.3588 | 0.97 | 0.9701 | 0.97 | 0.9700 | 0.494 |
0.3542 | 0.8 | 150 | 0.3565 | 0.971 | 0.9710 | 0.971 | 0.9710 | 0.495 |
0.3785 | 0.8533 | 160 | 0.3580 | 0.971 | 0.9711 | 0.971 | 0.9710 | 0.493 |
0.3557 | 0.9067 | 170 | 0.3616 | 0.971 | 0.9713 | 0.971 | 0.9710 | 0.487 |
0.3592 | 0.96 | 180 | 0.3618 | 0.972 | 0.9723 | 0.972 | 0.9720 | 0.488 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1