adriansanz's picture
End of training
0f1bdc3 verified
|
raw
history blame
4.71 kB
metadata
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 080524_epoch_5
    results: []

080524_epoch_5

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3399
  • Accuracy: 0.981
  • Precision: 0.9810
  • Recall: 0.981
  • F1: 0.9810
  • Ratio: 0.495

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 2
  • seed: 47
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 1
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.3013 0.0333 10 0.3474 0.978 0.9783 0.978 0.9780 0.488
0.3087 0.0667 20 0.3471 0.979 0.9790 0.979 0.9790 0.495
0.3181 0.1 30 0.3527 0.975 0.9752 0.975 0.9750 0.489
0.3134 0.1333 40 0.3602 0.971 0.9714 0.971 0.9710 0.485
0.3002 0.1667 50 0.3481 0.979 0.9790 0.979 0.9790 0.501
0.3226 0.2 60 0.3547 0.978 0.9780 0.978 0.9780 0.496
0.2919 0.2333 70 0.3687 0.972 0.9724 0.972 0.9720 0.486
0.2932 0.2667 80 0.3822 0.965 0.9664 0.965 0.9650 0.473
0.3303 0.3 90 0.3754 0.969 0.9700 0.969 0.9690 0.477
0.3162 0.3333 100 0.3557 0.975 0.9750 0.975 0.9750 0.505
0.3012 0.3667 110 0.3554 0.974 0.9741 0.974 0.9740 0.506
0.3337 0.4 120 0.3629 0.972 0.9725 0.972 0.9720 0.484
0.3007 0.4333 130 0.3492 0.979 0.9792 0.979 0.9790 0.491
0.3283 0.4667 140 0.3467 0.979 0.9790 0.979 0.9790 0.495
0.3238 0.5 150 0.3410 0.981 0.9810 0.981 0.9810 0.497
0.3076 0.5333 160 0.3387 0.982 0.9820 0.982 0.9820 0.498
0.3348 0.5667 170 0.3375 0.982 0.9820 0.982 0.9820 0.498
0.3258 0.6 180 0.3401 0.98 0.9801 0.98 0.9800 0.494
0.3195 0.6333 190 0.3424 0.978 0.9781 0.978 0.9780 0.492
0.31 0.6667 200 0.3392 0.981 0.9810 0.981 0.9810 0.495
0.3407 0.7 210 0.3393 0.982 0.9820 0.982 0.9820 0.502
0.3494 0.7333 220 0.3413 0.981 0.9810 0.981 0.9810 0.501
0.3574 0.7667 230 0.3402 0.982 0.9820 0.982 0.9820 0.496
0.3379 0.8 240 0.3385 0.982 0.9820 0.982 0.9820 0.496
0.3532 0.8333 250 0.3385 0.982 0.9820 0.982 0.9820 0.496
0.318 0.8667 260 0.3425 0.98 0.9801 0.98 0.9800 0.494
0.3475 0.9 270 0.3432 0.98 0.9801 0.98 0.9800 0.494
0.3142 0.9333 280 0.3408 0.981 0.9810 0.981 0.9810 0.495
0.3421 0.9667 290 0.3404 0.981 0.9810 0.981 0.9810 0.495
0.2935 1.0 300 0.3399 0.981 0.9810 0.981 0.9810 0.495

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1