File size: 9,818 Bytes
9839ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e56e4
9839ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e56e4
9839ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4956a2
 
9839ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4956a2
9839ba6
 
 
c4956a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9839ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "274e6135-2d97-4244-9183-65bcb1d24c80",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use the trained astroBERT model to generate embedings of text\n",
    "# to be used for downstream tasks"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2cc88ed3-6f52-49a2-99c0-344387758ab5",
   "metadata": {},
   "source": [
    "# Tutorial 0: Loading astroBERT to produce text embeddings\n",
    "This tutorial will show you how to load astroBERT and produce text embeddings that can be used on downstream tasks."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9e65c041-9d66-4fb1-96b9-4937000da02e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1 - load models and tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "67d99e96-c532-49ef-8542-a48eef818956",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2022-10-31 11:29:32.372654: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoTokenizer, AutoModel"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "00e1d48e-9898-44ef-b00e-43e3ab7fed7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# the model path can either be the name of the Huggingface repository\n",
    "remote_model_path = 'adsabs/astroBERT'\n",
    "# or the local path to the directory containing model weight and tokenizer vocab\n",
    "local_model_path = '../'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9bcc6009-6009-463f-a7da-f010c5fae27e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# make sure you load the tokenier with do_lower_case=False\n",
    "astroBERT_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=remote_model_path,\n",
    "                                                    use_auth_token=True,\n",
    "                                                    add_special_tokens=True,\n",
    "                                                    do_lower_case=False,\n",
    "                                                   )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "dbd144f0-6038-4917-94b0-aea9da72cac5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "PreTrainedTokenizerFast(name_or_path='adsabs/astroBERT', vocab_size=30000, model_max_len=1000000000000000019884624838656, is_fast=True, padding_side='right', truncation_side='right', special_tokens={'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token': '[MASK]'})"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "astroBERT_tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "dd9a9257-cbe4-4908-a9f4-8e1431dc375a",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of the model checkpoint at adsabs/astroBERT were not used when initializing BertModel: ['cls.seq_relationship.weight', 'cls.predictions.decoder.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
      "- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    }
   ],
   "source": [
    "# automodels: defaults to BertModel\n",
    "# it's normal to get warnings as a BertModel will not load the weights used for PreTraining\n",
    "astroBERT_automodel = AutoModel.from_pretrained(remote_model_path, \n",
    "                                                use_auth_token=True,\n",
    "                                               )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "572ddd38-a0dc-4583-a5a6-c4f3b2cb2553",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 2 - make some inference, the outputs are the embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "32fc0b97-4a2d-42ab-aa83-f5d8b39672b1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([3, 54])\n"
     ]
    }
   ],
   "source": [
    "# list of strings for which we want embeddings\n",
    "strings = ['The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the Space Shuttle Columbia during STS-93 by NASA on July 23, 1999.',\n",
    "           'Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy, which appears to homogeneously permeate all of space.',\n",
    "           'This work has been developed in the framework of the ‘Darklight’ programme, supported by the European Research Council through an Advanced Research Grant to LG (Project # 291521).'\n",
    "          ]\n",
    "\n",
    "# tokenizer the strings, with padding (needed to process multiple strings efficiently)\n",
    "inputs = astroBERT_tokenizer(strings, \n",
    "                             padding=True, \n",
    "                             return_tensors='pt'\n",
    "                            )\n",
    "\n",
    "# check the shape of the inputs\n",
    "print(inputs['input_ids'].shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "8b7c9456-573a-48e7-9bc2-839fcc25631d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pass the inputs through astroBERT\n",
    "import torch\n",
    "# no need for gradients, since we are only doing inference\n",
    "with torch.no_grad():\n",
    "    output = astroBERT_automodel(**inputs, \n",
    "                                 output_hidden_states=False\n",
    "                                )  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "116de57a-bb31-48d7-9556-64e01a16d56f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([3, 54, 768])\n"
     ]
    }
   ],
   "source": [
    "# BertModel outputs two tensors: last_hidden_state (our embeddings) and pooler_output (to be discarded as it's not meaningful)\n",
    "# see https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel.forward\n",
    "# embeddings will have shape = (# of strings, size of tokenized strings(padded), 768 (BERT embedding size))\n",
    "embeddings = output[0]\n",
    "print(embeddings.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "38e45291-6fd7-48cf-83df-e1cc5c8a699f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor([[ 0.5546,  0.9121,  0.6550,  ..., -0.1925,  0.7077, -0.2405],\n",
      "        [ 0.6252,  0.3175,  1.0899,  ...,  0.0576,  0.0529,  0.0603],\n",
      "        [ 0.1803, -0.4567,  1.2688,  ...,  0.6026, -0.5718, -0.2060],\n",
      "        ...,\n",
      "        [-0.4397, -0.5334,  1.1682,  ...,  0.9541,  0.4046, -0.4756],\n",
      "        [-0.3911,  0.7793,  0.2432,  ...,  0.2268, -1.0489, -1.4864],\n",
      "        [-0.4529, -0.7346,  0.0675,  ..., -0.3246, -0.2333, -0.6154]])\n"
     ]
    }
   ],
   "source": [
    "print(embeddings[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "26acf89f-b7fc-4872-ac81-0ee65030b465",
   "metadata": {},
   "outputs": [],
   "source": [
    "# If you wish to use the hidden states as additional embeddings, you can use output_hidden_states=True\n",
    "\n",
    "# no need for gradients, since we are only doing inference\n",
    "with torch.no_grad():\n",
    "    output = astroBERT_automodel(**inputs, \n",
    "                                 output_hidden_states=True\n",
    "                                )  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "a54314e9-5dcb-4c10-b0d2-219a93c7d16e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "13\n",
      "torch.Size([3, 54, 768])\n"
     ]
    }
   ],
   "source": [
    "# This will produce 13 embeddings, one for each hidden layer\n",
    "embeddings = output[2]\n",
    "print(len(embeddings))\n",
    "print(embeddings[0].shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "76765dcb-8035-44b2-a5a3-db181b561095",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}