Feature Extraction
Transformers
Safetensors
vision-encoder-decoder
custom_code
cxrmate-rrg24 / README.md
anicolson's picture
Update README.md
ca35de8 verified
|
raw
history blame
6.24 kB
metadata
library_name: transformers
license: apache-2.0
datasets:
  - StanfordAIMI/interpret-cxr-test-public
  - StanfordAIMI/interpret-cxr-test-hidden

CXRMate-RRG4

This is an evolution of https://huggingface.co/aehrc/cxrmate developed for the Radiology Report Generation task of BioNLP @ ACL 2024.

For this, proposed EAST: Entropy-Augmented Self-critical sequence Training (EAST). EAST modifies Self-Critical Sequence Training (SCST) by adding entropy regularisation. This helps maintain a higher entropy in the token distribution, preventing overfitting to common phrases and ensuring a broader exploration of the vocabulary during training, which is essential for handling the diversity of the radiology reports in the RRG24 datasets. We apply this to a multimodal language model with RadGraph as the reward.

Additionally, our model incorporates several other aspects. We use token type embeddings to differentiate between findings and impression section tokens, as well as image embeddings. To handle missing sections, we employ special tokens. We also utilise an attention mask with non-causal masking for the image embeddings and a causal mask for the report token embeddings.

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]