Upload model
Browse files- config.json +2 -2
- modelling_cxrrg.py +554 -0
config.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
-
"AutoModel": "
|
7 |
},
|
8 |
"decoder": {
|
9 |
"_name_or_path": "",
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"CXRRGModel"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
+
"AutoModel": "modelling_cxrrg.CXRRGModel"
|
7 |
},
|
8 |
"decoder": {
|
9 |
"_name_or_path": "",
|
modelling_cxrrg.py
ADDED
@@ -0,0 +1,554 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
from modelling_uniformer import MultiUniFormerWithProjectionHead
|
8 |
+
from torch.nn import CrossEntropyLoss, Linear
|
9 |
+
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
12 |
+
from transformers.modeling_utils import PreTrainedModel
|
13 |
+
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
|
14 |
+
VisionEncoderDecoderConfig,
|
15 |
+
)
|
16 |
+
from transformers.utils import logging
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
class CXRRGModel(VisionEncoderDecoderModel):
|
22 |
+
|
23 |
+
config_class = VisionEncoderDecoderConfig
|
24 |
+
base_model_prefix = "vision_encoder_decoder"
|
25 |
+
main_input_name = "pixel_values"
|
26 |
+
supports_gradient_checkpointing = True
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
config: Optional[PretrainedConfig] = None,
|
31 |
+
encoder: Optional[PreTrainedModel] = None,
|
32 |
+
decoder: Optional[PreTrainedModel] = None,
|
33 |
+
DefaultEncoderClass = MultiUniFormerWithProjectionHead,
|
34 |
+
DefaultDecoderClass = transformers.LlamaForCausalLM,
|
35 |
+
):
|
36 |
+
|
37 |
+
if decoder:
|
38 |
+
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
|
39 |
+
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
|
40 |
+
|
41 |
+
if config is None and (encoder is None or decoder is None):
|
42 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
43 |
+
if config is None:
|
44 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
45 |
+
else:
|
46 |
+
if not isinstance(config, self.config_class):
|
47 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
48 |
+
|
49 |
+
config.tie_word_embeddings = False
|
50 |
+
|
51 |
+
# Initialize with config:
|
52 |
+
PreTrainedModel.__init__(self, config)
|
53 |
+
|
54 |
+
# Encoder:
|
55 |
+
if encoder is None:
|
56 |
+
encoder = DefaultEncoderClass(config=config.encoder)
|
57 |
+
|
58 |
+
# Decoder:
|
59 |
+
if decoder is None:
|
60 |
+
assert not config.decoder.add_cross_attention
|
61 |
+
decoder = DefaultDecoderClass(config=config.decoder)
|
62 |
+
|
63 |
+
self.encoder = encoder
|
64 |
+
self.decoder = decoder
|
65 |
+
|
66 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
67 |
+
logger.warning(
|
68 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
69 |
+
f" {self.config.encoder}"
|
70 |
+
)
|
71 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
72 |
+
logger.warning(
|
73 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
74 |
+
f" {self.config.decoder}"
|
75 |
+
)
|
76 |
+
|
77 |
+
self.encoder.config = self.config.encoder
|
78 |
+
self.decoder.config = self.config.decoder
|
79 |
+
|
80 |
+
assert config.decoder.is_decoder
|
81 |
+
assert 'img_token_id' in self.decoder.config.__dict__
|
82 |
+
assert 'pad_token_id' in self.decoder.config.__dict__
|
83 |
+
assert 'token_type_embeddings' in self.decoder.config.__dict__
|
84 |
+
|
85 |
+
if self.decoder.config.token_type_embeddings == 'add':
|
86 |
+
self.token_type_embeddings = torch.nn.Embedding(self.decoder.config.num_token_types, self.decoder.config.hidden_size)
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
91 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
92 |
+
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
93 |
+
decoder_token_type_ids: Optional[torch.LongTensor] = None,
|
94 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
95 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
96 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
97 |
+
decoder_position_ids: Optional[torch.LongTensor] = None,
|
98 |
+
labels: Optional[torch.LongTensor] = None,
|
99 |
+
use_cache: Optional[bool] = None,
|
100 |
+
output_attentions: Optional[bool] = None,
|
101 |
+
output_hidden_states: Optional[bool] = None,
|
102 |
+
return_dict: Optional[bool] = None,
|
103 |
+
**kwargs,
|
104 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
105 |
+
|
106 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
107 |
+
|
108 |
+
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
109 |
+
|
110 |
+
kwargs_decoder = {
|
111 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
112 |
+
}
|
113 |
+
|
114 |
+
if decoder_inputs_embeds is None:
|
115 |
+
decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
|
116 |
+
|
117 |
+
if encoder_outputs is None: # Ths is for when generate() is not called; for generation, see prepare_inputs_for_generation():
|
118 |
+
if pixel_values is None:
|
119 |
+
raise ValueError("You have to specify pixel_values")
|
120 |
+
|
121 |
+
encoder_outputs = self.encoder(
|
122 |
+
pixel_values,
|
123 |
+
output_hidden_states=output_hidden_states,
|
124 |
+
return_dict=return_dict,
|
125 |
+
**kwargs_encoder,
|
126 |
+
) # UniFormer does not support output_attentions.
|
127 |
+
|
128 |
+
assert decoder_inputs_embeds is not None
|
129 |
+
decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
|
130 |
+
|
131 |
+
# Add image token type identifiers:
|
132 |
+
decoder_token_type_ids = torch.cat(
|
133 |
+
[
|
134 |
+
torch.full(
|
135 |
+
encoder_outputs[0].shape[:-1],
|
136 |
+
self.decoder.config.img_token_id,
|
137 |
+
dtype=decoder_token_type_ids.dtype,
|
138 |
+
device=decoder_token_type_ids.device,
|
139 |
+
),
|
140 |
+
decoder_token_type_ids
|
141 |
+
],
|
142 |
+
dim=1,
|
143 |
+
)
|
144 |
+
|
145 |
+
# Position identifiers accounting for padding:
|
146 |
+
report_position_ids = decoder_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
147 |
+
report_position_ids.masked_fill_(decoder_attention_mask == 0, 1)
|
148 |
+
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
|
149 |
+
|
150 |
+
# 4D attention mask:
|
151 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], decoder_attention_mask)
|
152 |
+
|
153 |
+
assert decoder_position_ids is not None
|
154 |
+
assert decoder_attention_mask is not None
|
155 |
+
assert decoder_token_type_ids is not None
|
156 |
+
|
157 |
+
if self.decoder.config.token_type_embeddings == 'add':
|
158 |
+
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
|
159 |
+
elif self.decoder.config.token_type_embeddings == 'inbuilt':
|
160 |
+
kwargs_decoder['token_type_ids'] = decoder_token_type_ids
|
161 |
+
|
162 |
+
# Forward:
|
163 |
+
decoder_outputs = self.decoder(
|
164 |
+
inputs_embeds=decoder_inputs_embeds,
|
165 |
+
attention_mask=decoder_attention_mask,
|
166 |
+
position_ids=decoder_position_ids,
|
167 |
+
output_attentions=output_attentions,
|
168 |
+
output_hidden_states=output_hidden_states,
|
169 |
+
use_cache=use_cache,
|
170 |
+
past_key_values=past_key_values,
|
171 |
+
return_dict=return_dict,
|
172 |
+
**kwargs_decoder,
|
173 |
+
)
|
174 |
+
|
175 |
+
# Loss:
|
176 |
+
loss = None
|
177 |
+
if labels is not None:
|
178 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
179 |
+
loss_fct = CrossEntropyLoss()
|
180 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
181 |
+
|
182 |
+
if not return_dict:
|
183 |
+
if loss is not None:
|
184 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
185 |
+
else:
|
186 |
+
return decoder_outputs + encoder_outputs
|
187 |
+
|
188 |
+
encoder_hidden_states = encoder_outputs[0]
|
189 |
+
|
190 |
+
return Seq2SeqLMOutput(
|
191 |
+
loss=loss,
|
192 |
+
logits=decoder_outputs.logits,
|
193 |
+
past_key_values=decoder_outputs.past_key_values,
|
194 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
195 |
+
decoder_attentions=decoder_outputs.attentions,
|
196 |
+
encoder_last_hidden_state=encoder_hidden_states,
|
197 |
+
)
|
198 |
+
|
199 |
+
def prepare_inputs_for_generation(
|
200 |
+
self,
|
201 |
+
input_ids,
|
202 |
+
special_token_ids,
|
203 |
+
token_type_id_sections=None,
|
204 |
+
past_key_values=None,
|
205 |
+
use_cache=None,
|
206 |
+
encoder_outputs=None,
|
207 |
+
**kwargs,
|
208 |
+
):
|
209 |
+
"""
|
210 |
+
Modification of:
|
211 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
212 |
+
"""
|
213 |
+
|
214 |
+
report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()
|
215 |
+
|
216 |
+
if past_key_values is None:
|
217 |
+
|
218 |
+
# 4D attention mask:
|
219 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(encoder_outputs[1], report_attention_mask)
|
220 |
+
|
221 |
+
# Position identifiers accounting for padding:
|
222 |
+
report_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
223 |
+
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
224 |
+
decoder_position_ids = torch.cat([encoder_outputs[1], report_position_ids], dim=1)
|
225 |
+
|
226 |
+
# `inputs_embeds` are only to be used in the 1st generation step:
|
227 |
+
inputs_embeds = torch.cat([encoder_outputs[0], self.decoder.get_input_embeddings()(input_ids)], dim=1)
|
228 |
+
|
229 |
+
decoder_token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids, token_type_id_sections)
|
230 |
+
decoder_token_type_ids = torch.cat(
|
231 |
+
[
|
232 |
+
torch.full(
|
233 |
+
encoder_outputs[0].shape[:-1],
|
234 |
+
self.decoder.config.img_token_id,
|
235 |
+
dtype=decoder_token_type_ids.dtype,
|
236 |
+
device=decoder_token_type_ids.device,
|
237 |
+
),
|
238 |
+
decoder_token_type_ids,
|
239 |
+
],
|
240 |
+
dim=1,
|
241 |
+
) # Add image token type identifiers.
|
242 |
+
|
243 |
+
input_dict = {
|
244 |
+
'decoder_input_ids': input_ids,
|
245 |
+
'decoder_inputs_embeds': inputs_embeds,
|
246 |
+
'decoder_token_type_ids': decoder_token_type_ids,
|
247 |
+
}
|
248 |
+
else:
|
249 |
+
|
250 |
+
# 4D attention mask:
|
251 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(encoder_outputs[1], report_attention_mask)
|
252 |
+
|
253 |
+
# Position identifiers accounting for padding:
|
254 |
+
decoder_position_ids = report_attention_mask.cumsum(-1) + encoder_outputs[1].max(dim=1).values[:, None]
|
255 |
+
decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
256 |
+
|
257 |
+
# Always place token_ids_to_token_type_ids_past before input_ids = input_ids[:, remove_prefix_length:]:
|
258 |
+
decoder_token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids, token_type_id_sections)
|
259 |
+
decoder_position_ids = decoder_position_ids[:, -1:]
|
260 |
+
|
261 |
+
past_length = past_key_values[0][0].shape[2]
|
262 |
+
|
263 |
+
# Some generation methods only pass the last input ID:
|
264 |
+
if input_ids.shape[1] > past_length:
|
265 |
+
remove_prefix_length = past_length
|
266 |
+
else:
|
267 |
+
# Keep only the final ID:
|
268 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
269 |
+
|
270 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
271 |
+
|
272 |
+
input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}
|
273 |
+
|
274 |
+
input_dict.update(
|
275 |
+
{
|
276 |
+
'decoder_attention_mask': decoder_attention_mask,
|
277 |
+
'decoder_position_ids': decoder_position_ids,
|
278 |
+
'encoder_outputs': encoder_outputs,
|
279 |
+
'past_key_values': past_key_values,
|
280 |
+
'use_cache': use_cache,
|
281 |
+
}
|
282 |
+
)
|
283 |
+
return input_dict
|
284 |
+
|
285 |
+
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
|
286 |
+
"""
|
287 |
+
Extract token type identifiers from the token identifiers.
|
288 |
+
|
289 |
+
Argument/s:
|
290 |
+
token_ids - token identifiers.
|
291 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
292 |
+
token_type_id_section - token type identifier for each section.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
token_type_ids - token type identifiers.
|
296 |
+
"""
|
297 |
+
|
298 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
299 |
+
|
300 |
+
mbatch_size, seq_len = token_ids.shape
|
301 |
+
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
302 |
+
|
303 |
+
for i, j in enumerate(special_token_ids):
|
304 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
305 |
+
cols = (token_ids == j).int().argmax(dim=1)
|
306 |
+
rows = torch.arange(mbatch_size, device=token_ids.device)
|
307 |
+
|
308 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
309 |
+
cols += 1
|
310 |
+
|
311 |
+
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
|
312 |
+
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
|
313 |
+
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
|
314 |
+
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
|
315 |
+
|
316 |
+
# Indices to that correspond to the second sequence:
|
317 |
+
if rows.nelement() != 0:
|
318 |
+
ids = torch.stack([
|
319 |
+
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
|
320 |
+
y, seq_len, device=token_ids.device,
|
321 |
+
)
|
322 |
+
])
|
323 |
+
|
324 |
+
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
|
325 |
+
|
326 |
+
return token_type_ids
|
327 |
+
|
328 |
+
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
|
329 |
+
"""
|
330 |
+
Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
|
331 |
+
token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).
|
332 |
+
|
333 |
+
Argument/s:
|
334 |
+
token_ids - token identifiers.
|
335 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
336 |
+
|
337 |
+
Returns:
|
338 |
+
token_type_ids - token type identifiers.
|
339 |
+
"""
|
340 |
+
|
341 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
342 |
+
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
343 |
+
|
344 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
345 |
+
token_ids = token_ids[:, :-1]
|
346 |
+
|
347 |
+
for i, j in enumerate(special_token_ids):
|
348 |
+
|
349 |
+
# Find first occurrence of special token, which indicates the boundary between sections:
|
350 |
+
exists = torch.any(token_ids == j, dim=1, keepdim=True)
|
351 |
+
token_type_ids[exists] = token_type_id_sections[i + 1]
|
352 |
+
|
353 |
+
return token_type_ids
|
354 |
+
|
355 |
+
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
|
356 |
+
"""
|
357 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
358 |
+
|
359 |
+
Argument/s:
|
360 |
+
findings - findings sections.
|
361 |
+
impression - impression sections.
|
362 |
+
return_token_type_ids - return the token type identifiers.
|
363 |
+
tokenizer - Hugging Face tokenizer.
|
364 |
+
max_len - maximum number of tokens.
|
365 |
+
|
366 |
+
Returns:
|
367 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
368 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
369 |
+
label_ids - the label token identifiers for the decoder.
|
370 |
+
"""
|
371 |
+
|
372 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
373 |
+
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
374 |
+
zip(findings, impression)]
|
375 |
+
|
376 |
+
# Tokenize the report:
|
377 |
+
tokenized = tokenizer(
|
378 |
+
reports,
|
379 |
+
padding='longest',
|
380 |
+
truncation=True,
|
381 |
+
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
382 |
+
return_tensors='pt',
|
383 |
+
return_token_type_ids=False,
|
384 |
+
add_special_tokens=False,
|
385 |
+
).to(self.device)
|
386 |
+
|
387 |
+
# Modify for language modelling:
|
388 |
+
batch_dict = {
|
389 |
+
|
390 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
391 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
392 |
+
|
393 |
+
# Remove last token identifier to match the sequence length of the labels:
|
394 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
395 |
+
|
396 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
397 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
398 |
+
}
|
399 |
+
|
400 |
+
return batch_dict
|
401 |
+
|
402 |
+
def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
|
403 |
+
"""
|
404 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
405 |
+
|
406 |
+
Argument/s:
|
407 |
+
tokenizer - Hugging Face tokenizer.
|
408 |
+
max_len - maximum number of tokens.
|
409 |
+
findings - findings sections.
|
410 |
+
impression - impression sections.
|
411 |
+
reports - prepared reports, with special tokens and report sections.
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
415 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
416 |
+
label_ids - the label token identifiers for the decoder.
|
417 |
+
"""
|
418 |
+
|
419 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
420 |
+
if reports is None:
|
421 |
+
assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined."
|
422 |
+
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
423 |
+
zip(findings, impression)]
|
424 |
+
|
425 |
+
# Tokenize the report:
|
426 |
+
tokenized = tokenizer(
|
427 |
+
reports,
|
428 |
+
padding='longest',
|
429 |
+
truncation=True,
|
430 |
+
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
431 |
+
return_tensors='pt',
|
432 |
+
return_token_type_ids=False,
|
433 |
+
add_special_tokens=False,
|
434 |
+
).to(self.device)
|
435 |
+
|
436 |
+
# Modify for language modelling:
|
437 |
+
batch_dict = {
|
438 |
+
|
439 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
440 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
441 |
+
|
442 |
+
# Remove last token identifier to match the sequence length of the labels:
|
443 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
444 |
+
|
445 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
446 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
447 |
+
}
|
448 |
+
|
449 |
+
return batch_dict
|
450 |
+
|
451 |
+
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
|
452 |
+
"""
|
453 |
+
Split the token identifiers into sections, then convert the token identifiers into strings.
|
454 |
+
|
455 |
+
Argument/s:
|
456 |
+
token_ids - token identifiers.
|
457 |
+
special_token_ids - special token identifiers that indicate the end of each section.
|
458 |
+
tokenizer - Hugging Face tokenizer.
|
459 |
+
|
460 |
+
Returns:
|
461 |
+
token_type_ids - token type identifiers.
|
462 |
+
"""
|
463 |
+
|
464 |
+
_, seq_len = token_ids.shape
|
465 |
+
|
466 |
+
# The number of sections is the same as the number of special_token_ids:
|
467 |
+
num_sections = len(special_token_ids)
|
468 |
+
|
469 |
+
sections = {k: [] for k in range(num_sections)}
|
470 |
+
|
471 |
+
for i in token_ids:
|
472 |
+
prev_col = 0
|
473 |
+
for j, k in enumerate(special_token_ids):
|
474 |
+
|
475 |
+
# The maximum sequence length was exceeded, thus no more tokens:
|
476 |
+
if prev_col >= seq_len:
|
477 |
+
sections[j].append('')
|
478 |
+
continue
|
479 |
+
|
480 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
481 |
+
col = (i == k).int().argmax().item()
|
482 |
+
|
483 |
+
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
|
484 |
+
# the maximum sequence length):
|
485 |
+
if col == 0:
|
486 |
+
col = seq_len
|
487 |
+
|
488 |
+
# Extract section token identifiers:
|
489 |
+
section_token_ids = i[prev_col:col]
|
490 |
+
prev_col = col
|
491 |
+
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
|
492 |
+
|
493 |
+
sections[j].append(section_string)
|
494 |
+
|
495 |
+
return tuple(sections.values())
|
496 |
+
|
497 |
+
@staticmethod
|
498 |
+
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
499 |
+
|
500 |
+
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
501 |
+
report_seq_len = causal_2d_attention_mask.shape[-1]
|
502 |
+
|
503 |
+
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
504 |
+
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
505 |
+
|
506 |
+
# Upper left of attention matrix:
|
507 |
+
upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
|
508 |
+
upper_left = upper_left * non_causal_2d_attention_mask
|
509 |
+
upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
|
510 |
+
|
511 |
+
causal_mask = torch.tril(
|
512 |
+
torch.ones(
|
513 |
+
(
|
514 |
+
report_seq_len,
|
515 |
+
report_seq_len,
|
516 |
+
),
|
517 |
+
dtype=torch.long,
|
518 |
+
device=causal_2d_attention_mask.device,
|
519 |
+
),
|
520 |
+
)
|
521 |
+
|
522 |
+
# Lower right of attention matrix:
|
523 |
+
lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
524 |
+
lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
525 |
+
lower_right = lower_right * causal_mask
|
526 |
+
|
527 |
+
# Upper right of attention matrix:
|
528 |
+
upper_right = torch.zeros(
|
529 |
+
causal_2d_attention_mask.shape[0],
|
530 |
+
1,
|
531 |
+
prompt_seq_len,
|
532 |
+
report_seq_len,
|
533 |
+
dtype=torch.long,
|
534 |
+
device=causal_2d_attention_mask.device,
|
535 |
+
)
|
536 |
+
|
537 |
+
# Lower left of attention matrix:
|
538 |
+
lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
539 |
+
lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
540 |
+
|
541 |
+
left = torch.cat((upper_left, lower_left), dim=2)
|
542 |
+
right = torch.cat((upper_right, lower_right), dim=2)
|
543 |
+
|
544 |
+
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
545 |
+
return mixed_causality_4d_attention_mask
|
546 |
+
|
547 |
+
@staticmethod
|
548 |
+
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
549 |
+
|
550 |
+
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
551 |
+
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
552 |
+
|
553 |
+
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
554 |
+
return mixed_causality_4d_attention_mask
|