medicap / modelling_medicap.py
anicolson's picture
Upload folder using huggingface_hub
4aa737e
raw
history blame
11.9 kB
import os
from typing import Any, Optional, Tuple, Union
import torch
import transformers
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
VisionEncoderDecoderConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class CvtWithProjectionHeadConfig(transformers.CvtConfig):
def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.projection_size = projection_size
class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput):
last_hidden_state: torch.FloatTensor
class CvtProjectionHead(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
# No bias as following layer normalisation with bias:
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer_norm(x)
x = self.projection(x)
return x
class CvtWithProjectionHead(transformers.CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
self.projection_head = CvtProjectionHead(config)
# Initialize weights and apply final processing:
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutputWithProjectionEmbedding]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
projection = self.projection_head(
torch.permute(torch.flatten(outputs.last_hidden_state, 2), [0, 2, 1]),
)
if not return_dict:
return projection
return ModelOutputWithProjectionEmbedding(
last_hidden_state=projection,
)
class MedICapEncoderDecoderModel(VisionEncoderDecoderModel):
config_class = VisionEncoderDecoderConfig
base_model_prefix = "vision_encoder_decoder"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def __init__(
self,
config: Optional[PretrainedConfig] = None,
encoder: Optional[PreTrainedModel] = None,
decoder: Optional[PreTrainedModel] = None,
):
if decoder:
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
if config is None and (encoder is None or decoder is None):
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
if config is None:
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
config.tie_word_embeddings = False
# initialize with config
PreTrainedModel.__init__(self, config)
# Encoder:
if encoder is None:
encoder = CvtWithProjectionHead(config=config.encoder)
# Decoder:
if decoder is None:
decoder = transformers.GPT2LMHeadModel(config=config.decoder)
self.encoder = encoder
self.decoder = decoder
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
logger.warning(
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
f" {self.config.encoder}"
)
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
logger.warning(
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
f" {self.config.decoder}"
)
self.encoder.config = self.config.encoder
self.decoder.config = self.config.decoder
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if decoder_inputs_embeds is None:
decoder_inputs_embeds = self.decoder.transformer.wte(decoder_input_ids)
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
) # CvT does not support output_attentions.
decoder_inputs_embeds = torch.cat([encoder_outputs[0], decoder_inputs_embeds], dim=1)
if decoder_attention_mask is not None:
decoder_attention_mask = torch.cat(
[
torch.ones(encoder_outputs[0].shape[:-1], dtype=decoder_attention_mask.dtype, device=self.device),
decoder_attention_mask
],
dim=1,
)
decoder_outputs = self.decoder(
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Loss:
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
"""
Modification of:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
This can help with managing input_embeds and input_ids:
https://github.com/huggingface/transformers/issues/6535
"""
input_dict = {'use_cache': use_cache, 'encoder_outputs': encoder_outputs, 'attention_mask': attention_mask}
if past_key_values is None:
decoder_inputs = self.decoder.prepare_inputs_for_generation(
input_ids, inputs_embeds=encoder_outputs[0], past_key_values=past_key_values,
)
input_dict['decoder_inputs_embeds'] = decoder_inputs['inputs_embeds']
else:
decoder_inputs = self.decoder.prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values,
)
input_dict['decoder_input_ids'] = decoder_inputs['input_ids']
input_dict['past_key_values'] = decoder_inputs['past_key_values']
input_dict['decoder_attention_mask'] = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None
return input_dict
def tokenize_captions_teacher_forcing(
self,
captions: str,
tokenizer: PreTrainedTokenizerFast,
max_len: int,
):
"""
Tokenizes the captions and creates the inputs and targets for teacher forcing.
Argument/s:
captions - the captions.
tokenizer - Hugging Face tokenizer.
max_len - maximum number of tokens.
Returns:
batch_dict = {
decoder_input_ids - the token identifiers for the input of the decoder.
decoder_attention_mask - the attention mask for the decoder_input_ids.
decoder_token_type_ids - the token type identifiers for the decoder_input_ids.
label_ids - the label token identifiers for the decoder.
}
"""
# Prepare the caption for the tokenizer by placing the special tokens:
caption = [f'{tokenizer.bos_token}{i}{tokenizer.eos_token}' for i in captions]
# Tokenize the caption:
tokenized = tokenizer(
caption,
padding='longest',
truncation=True,
max_length=max_len + 1, # +1 to account for the shift between input and target.
return_tensors='pt',
return_token_type_ids=False,
add_special_tokens=False, # Done in prepare_sections_for_tokenizer()
).to(self.device)
# Modify for language modelling:
batch_dict = {
# Labels for the decoder (shifted right by one for autoregression):
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
# Remove last token identifier to match the sequence length of the labels:
'decoder_input_ids': tokenized['input_ids'][:, :-1],
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
}
return batch_dict