|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- arxiv-summarization |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-base-axriv-to-abstract-3 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: arxiv-summarization |
|
type: arxiv-summarization |
|
config: section |
|
split: validation |
|
args: section |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.1301 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-base-axriv-to-abstract-3 |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the arxiv-summarization dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6588 |
|
- Rouge1: 0.1301 |
|
- Rouge2: 0.0481 |
|
- Rougel: 0.1047 |
|
- Rougelsum: 0.1047 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.5634 | 0.61 | 4000 | 2.4010 | 0.1339 | 0.0519 | 0.1074 | 0.1075 | 19.0 | |
|
| 2.4533 | 1.21 | 8000 | 2.3582 | 0.1318 | 0.0517 | 0.1067 | 0.1067 | 19.0 | |
|
| 3.0109 | 1.82 | 12000 | 2.7488 | 0.1366 | 0.0509 | 0.1096 | 0.1095 | 18.9963 | |
|
| 2.9063 | 2.42 | 16000 | 2.6588 | 0.1301 | 0.0481 | 0.1047 | 0.1047 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|