finetuned-arsenic / README.md
afraid15chicken's picture
Model save
32306ee verified
|
raw
history blame
3.05 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-arsenic
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9993451211525868

finetuned-arsenic

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0026
  • Accuracy: 0.9993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2214 0.1848 100 0.2314 0.9247
0.2189 0.3697 200 0.1578 0.9404
0.2104 0.5545 300 0.1063 0.9673
0.2138 0.7394 400 0.0998 0.9718
0.2149 0.9242 500 0.0644 0.9790
0.1439 1.1091 600 0.0757 0.9646
0.1038 1.2939 700 0.1316 0.9574
0.0458 1.4787 800 0.0282 0.9902
0.0078 1.6636 900 0.1226 0.9718
0.0286 1.8484 1000 0.0584 0.9856
0.0493 2.0333 1100 0.1419 0.9633
0.0028 2.2181 1200 0.0232 0.9948
0.0292 2.4030 1300 0.0171 0.9935
0.0402 2.5878 1400 0.0061 0.9987
0.043 2.7726 1500 0.0497 0.9889
0.0224 2.9575 1600 0.0062 0.9987
0.0021 3.1423 1700 0.0092 0.9974
0.0025 3.3272 1800 0.0041 0.9987
0.0018 3.5120 1900 0.0054 0.9974
0.0034 3.6969 2000 0.0052 0.9980
0.0072 3.8817 2100 0.0026 0.9993

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1