metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-arsenic
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9986902423051736
finetuned-arsenic
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0039
- Accuracy: 0.9987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3535 | 0.1848 | 100 | 0.2896 | 0.8762 |
0.1869 | 0.3697 | 200 | 0.1380 | 0.9574 |
0.1594 | 0.5545 | 300 | 0.1052 | 0.9679 |
0.117 | 0.7394 | 400 | 0.0502 | 0.9836 |
0.0796 | 0.9242 | 500 | 0.0881 | 0.9673 |
0.0795 | 1.1091 | 600 | 0.0698 | 0.9751 |
0.0644 | 1.2939 | 700 | 0.0342 | 0.9895 |
0.054 | 1.4787 | 800 | 0.0344 | 0.9882 |
0.0776 | 1.6636 | 900 | 0.0292 | 0.9915 |
0.0143 | 1.8484 | 1000 | 0.0242 | 0.9928 |
0.0597 | 2.0333 | 1100 | 0.0132 | 0.9954 |
0.0285 | 2.2181 | 1200 | 0.0263 | 0.9928 |
0.0349 | 2.4030 | 1300 | 0.0070 | 0.9980 |
0.0164 | 2.5878 | 1400 | 0.0067 | 0.9987 |
0.0058 | 2.7726 | 1500 | 0.0119 | 0.9954 |
0.0013 | 2.9575 | 1600 | 0.0066 | 0.9987 |
0.0028 | 3.1423 | 1700 | 0.0052 | 0.9987 |
0.0028 | 3.3272 | 1800 | 0.0052 | 0.9987 |
0.0244 | 3.5120 | 1900 | 0.0264 | 0.9928 |
0.002 | 3.6969 | 2000 | 0.0025 | 0.9993 |
0.0054 | 3.8817 | 2100 | 0.0039 | 0.9987 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1