metadata
base_model: malhajar/phi-2-chat
datasets:
- yahma/alpaca-cleaned
inference: false
language:
- en
model_creator: malhajar
model_name: phi-2-chat
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
malhajar/phi-2-chat-GGUF
Quantized GGUF model files for phi-2-chat from malhajar
Name | Quant method | Size |
---|---|---|
phi-2-chat.fp16.gguf | fp16 | 5.56 GB |
phi-2-chat.q2_k.gguf | q2_k | 1.17 GB |
phi-2-chat.q3_k_m.gguf | q3_k_m | 1.48 GB |
phi-2-chat.q4_k_m.gguf | q4_k_m | 1.79 GB |
phi-2-chat.q5_k_m.gguf | q5_k_m | 2.07 GB |
phi-2-chat.q6_k.gguf | q6_k | 2.29 GB |
phi-2-chat.q8_0.gguf | q8_0 | 2.96 GB |
Original Model Card:
Model Card for Model ID
malhajar/phi-2-chat is a finetuned version of phi-2
using SFT Training.
This model can answer information in a chat format as it is finetuned specifically on instructions specifically alpaca-cleaned
Model Description
- Developed by:
Mohamad Alhajar
- Language(s) (NLP): Turkish
- Finetuned from model:
microsoft/phi-2
Prompt Template
### Instruction:
<prompt> (without the <>)
### Response:
How to Get Started with the Model
Use the code sample provided in the original post to interact with the model.
from transformers import AutoTokenizer,AutoModelForCausalLM
model_id = "malhajar/phi-2-chat"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
torch_dtype=torch.float16,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_id)
question: "Türkiyenin en büyük şehir nedir?"
# For generating a response
prompt = '''
### Instruction: {question} ### Response:
'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,repetition_penalty=1.3
top_p=0.95,trust_remote_code=True,)
response = tokenizer.decode(output[0])
print(response)