freecs/phine-2-v0-GGUF

Quantized GGUF model files for phine-2-v0 from freecs

Name Quant method Size
phine-2-v0.fp16.gguf fp16 5.56 GB
phine-2-v0.q2_k.gguf q2_k 1.17 GB
phine-2-v0.q3_k_m.gguf q3_k_m 1.48 GB
phine-2-v0.q4_k_m.gguf q4_k_m 1.79 GB
phine-2-v0.q5_k_m.gguf q5_k_m 2.07 GB
phine-2-v0.q6_k.gguf q6_k 2.29 GB
phine-2-v0.q8_0.gguf q8_0 2.96 GB

Original Model Card:


Model Card: Phine-2-v0

Overview

  • Model Name: Phine-2
  • Base Model: Phi-2 (Microsoft model)
  • Created By: GR
  • Donations Link: Click Me

Code Usage

To try Phine, use the following Python code snippet:

#######################
'''
Name: Phine Inference
License: MIT
'''
#######################


##### Dependencies

""" IMPORTANT: Uncomment the following line if you are in a Colab/Notebook environment """

#!pip install gradio einops accelerate bitsandbytes transformers

#####

import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import random
import re

def cut_text_after_last_token(text, token):

    last_occurrence = text.rfind(token)

    if last_occurrence != -1:
        result = text[last_occurrence + len(token):].strip()
        return result
    else:
        return None


class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):

    def __init__(self, sentinel_token_ids: torch.LongTensor,
                 starting_idx: int):
        transformers.StoppingCriteria.__init__(self)
        self.sentinel_token_ids = sentinel_token_ids
        self.starting_idx = starting_idx

    def __call__(self, input_ids: torch.LongTensor,
                 _scores: torch.FloatTensor) -> bool:
        for sample in input_ids:
            trimmed_sample = sample[self.starting_idx:]

            if trimmed_sample.shape[-1] < self.sentinel_token_ids.shape[-1]:
                continue

            for window in trimmed_sample.unfold(
                    0, self.sentinel_token_ids.shape[-1], 1):
                if torch.all(torch.eq(self.sentinel_token_ids, window)):
                    return True
        return False





model_path = 'freecs/phine-2-v0'

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=False, torch_dtype=torch.float16).to(device) #remove .to() if load_in_4/8bit = True

sys_message = "You are an AI assistant named Phine developed by FreeCS.org. You are polite and smart." #System Message

def phine(message, history, temperature, top_p, top_k, repetition_penalty):



    n = 0
    context = ""
    if history and len(history) > 0:

        for x in history:
          for h in x:
            if n%2 == 0:
              context+=f"""\n<|prompt|>{h}\n"""
            else:
              context+=f"""<|response|>{h}"""
            n+=1
    else:

        context = ""




    prompt = f"""\n<|system|>{sys_message}"""+context+"\n<|prompt|>"+message+"<|endoftext|>\n<|response|>"
    tokenized = tokenizer(prompt, return_tensors="pt").to(device)


    stopping_criteria_list = transformers.StoppingCriteriaList([
        _SentinelTokenStoppingCriteria(
            sentinel_token_ids=tokenizer(
                "<|endoftext|>",
                add_special_tokens=False,
                return_tensors="pt",
            ).input_ids.to(device),
            starting_idx=tokenized.input_ids.shape[-1])
    ])

        
    token = model.generate(**tokenized,
                        stopping_criteria=stopping_criteria_list,
                        do_sample=True,
                        max_length=2048, temperature=temperature, top_p=top_p, top_k = top_k, repetition_penalty = repetition_penalty
                           )

    completion = tokenizer.decode(token[0], skip_special_tokens=False)
    token = "<|response|>"
    res = cut_text_after_last_token(completion, token)
    return res.replace('<|endoftext|>', '')
demo = gr.ChatInterface(phine,
                          additional_inputs=[
                              gr.Slider(0.1, 2.0, label="temperature", value=0.5),
                              gr.Slider(0.1, 2.0, label="Top P", value=0.9),
                              gr.Slider(1, 500, label="Top K", value=50),
                              gr.Slider(0.1, 2.0, label="Repetition Penalty", value=1.15)
                          ]
                          )

if __name__ == "__main__":
    demo.queue().launch(share=True, debug=True) #If debug=True causes problems you can set it to False

Contact

For inquiries, collaboration opportunities, or additional information, reach out to me on Twitter: gr.

Disclaimer

As of now, I have not applied Reinforcement Learning from Human Feedback (RLHF). Due to this, the model may generate unexpected or potentially unethical outputs.


Downloads last month
16
GGUF
Model size
2.78B params
Architecture
phi2

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for afrideva/phine-2-v0-GGUF

Quantized
(1)
this model

Dataset used to train afrideva/phine-2-v0-GGUF