ageng-anugrah's picture
First model
2f307a4
|
raw
history blame
2.05 kB
metadata
language: id
tags:
  - indobert
  - indobenchmark

How to use

Load model and tokenizer

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("ageng-anugrah/indobert-large-p2-finetuned-ner")
model = AutoModelForTokenClassification.from_pretrained("ageng-anugrah/indobert-large-p2-finetuned-ner")

Extract NER Tag

import torch
def predict(model, tokenizer, sentence):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    inputs = tokenizer(sentence.split(),
                    is_split_into_words = True,
                    return_offsets_mapping=True, 
                    return_tensors="pt",
                    padding='max_length', 
                    truncation=True, 
                    max_length=512)
    
    model.to(device)
    # move to gpu
    ids = inputs["input_ids"].to(device)
    mask = inputs["attention_mask"].to(device)
    
    # forward pass
    outputs = model(ids, attention_mask=mask)
    logits = outputs[0]

    active_logits = logits.view(-1, model.num_labels) # shape (batch_size * seq_len, num_labels)
    flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size*seq_len,) - predictions at the token level

    tokens = tokenizer.convert_ids_to_tokens(ids.squeeze().tolist())
    token_predictions = [model.config.id2label[i] for i in flattened_predictions.cpu().numpy()]
    wp_preds = list(zip(tokens, token_predictions)) # list of tuples. Each tuple = (wordpiece, prediction)

    prediction = []
    for token_pred, mapping in zip(wp_preds, inputs["offset_mapping"].squeeze().tolist()):
        #only predictions on first word pieces are important
        if mapping[0] == 0 and mapping[1] != 0:
            prediction.append(token_pred[1])
        else:
            continue

    return sentence.split(), prediction

sentence = "BJ Habibie adalah Presiden Indonesia ke-3 yang lahir pada tanggl 25 Juni 1936"
words, labels = predict(model, tokenizer, sentence)