agnesluhtaru's picture
Update metadata with huggingface_hub
86a632f
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-large-et-ERR2020-v2
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: et
          split: test
        metrics:
          - type: wer
            value: 17.4
            name: WER

whisper-large-et-ERR2020-v2

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2915
  • Wer: 13.8640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2158 0.1 1000 0.3205 23.8154
0.0897 0.2 2000 0.2961 18.3340
0.0785 0.3 3000 0.2839 17.5230
0.0653 0.4 4000 0.2847 17.8752
0.0541 0.5 5000 0.2906 15.2645
0.0566 0.6 6000 0.2845 15.2081
0.051 0.7 7000 0.2888 14.4668
0.049 1.03 8000 0.2927 15.3130
0.044 1.13 9000 0.2915 13.8640
0.0379 1.23 10000 0.2913 16.5773

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+rocm5.1.1
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2