vit-facial-expression

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8099
  • Accuracy: 0.7378
  • Precision: 0.7303
  • Recall: 0.7378
  • F1: 0.7274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.0154 0.4831 100 1.8473 0.3168 0.3005 0.3168 0.1961
1.569 0.9662 200 1.3372 0.5767 0.5110 0.5767 0.4926
1.185 1.4493 300 1.1047 0.6474 0.5805 0.6474 0.5937
1.044 1.9324 400 0.9638 0.6896 0.6787 0.6896 0.6611
0.8813 2.4155 500 0.8928 0.7005 0.6822 0.7005 0.6646
0.7925 2.8986 600 0.8209 0.7301 0.7183 0.7301 0.7186

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
12
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for agrpdrlm/vit-facial-expression

Finetuned
(1772)
this model

Evaluation results