|
import torch |
|
from torch import nn |
|
import math |
|
import torch.nn.functional as F |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, chs, num_heads=1, ffn_expansion=4, dropout=0.1): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(chs) |
|
self.attn = nn.MultiheadAttention(embed_dim=chs, num_heads=num_heads, batch_first=True) |
|
|
|
self.ffn = nn.Sequential( |
|
nn.Linear(chs, chs*ffn_expansion), |
|
nn.GELU(), |
|
nn.Linear(chs*ffn_expansion, chs) |
|
) |
|
|
|
self.norm2 = nn.LayerNorm(chs) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
b,c,h,w = x.shape |
|
x_reshaped = x.view(b,c,h*w).transpose(1,2) |
|
|
|
attn_out, _ = self.attn(self.norm(x_reshaped), self.norm(x_reshaped), self.norm(x_reshaped)) |
|
x_attn = x_reshaped + self.dropout(attn_out) |
|
|
|
ffn_out = self.ffn(self.norm2(x_attn)) |
|
x_out = x_attn + self.dropout(ffn_out) |
|
|
|
|
|
x_out = x_out.transpose(1,2).view(b,c,h,w) |
|
return x_out |
|
|
|
|
|
|
|
|
|
class CBAM(nn.Module): |
|
def __init__(self,chs, reduction=16): |
|
super().__init__() |
|
|
|
self.channel_attn = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(chs, chs//reduction, 1), |
|
nn.ReLU(), |
|
nn.Conv2d(chs//reduction, chs, 1), |
|
nn.Sigmoid() |
|
) |
|
|
|
self.spatial_attn = nn.Sequential( |
|
nn.Conv2d(2,1,kernel_size=7,padding=3), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self,x): |
|
ch_wt = self.channel_attn(x) |
|
x = x*ch_wt |
|
|
|
avg_pool = torch.mean(x, dim=1, keepdim=True) |
|
max_pool, _ = torch.max(x, dim=1, keepdim=True) |
|
sp_wt = self.spatial_attn(torch.cat([avg_pool, max_pool], dim=1)) |
|
x = x* sp_wt |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
class Block_CBAM(nn.Module): |
|
def __init__(self, in_ch, out_ch, time_emb_dim, up=False): |
|
super().__init__() |
|
self.time_mlp = nn.Linear(time_emb_dim, out_ch) |
|
if up: |
|
|
|
self.conv1 = nn.Conv2d(2*in_ch, out_ch, 3, padding=1) |
|
self.transform = nn.ConvTranspose2d(out_ch, out_ch, 4, 2, 1) |
|
else: |
|
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1) |
|
self.transform = nn.Conv2d(out_ch, out_ch, 4,2,1) |
|
|
|
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1) |
|
self.relu = nn.ReLU() |
|
self.batch_norm1 = nn.BatchNorm2d(out_ch) |
|
self.batch_norm2 = nn.BatchNorm2d(out_ch) |
|
|
|
self.cbam = CBAM(out_ch) |
|
|
|
def forward(self, x, t, ): |
|
h = self.batch_norm1(self.relu(self.conv1(x))) |
|
time_emb = self.relu(self.time_mlp(t)) |
|
time_emb = time_emb[(..., ) + (None, ) * 2] |
|
h = h + time_emb |
|
h = self.batch_norm2(self.relu(self.conv2(h))) |
|
|
|
h = self.cbam(h) |
|
return self.transform(h) |