FasterViT: Fast Vision Transformers with Hierarchical Attention.

FasterViT achieves a new SOTA Pareto-front in terms of accuracy vs. image throughput without extra training data !

Note: Please use the latest NVIDIA TensorRT release to enjoy the benefits of optimized FasterViT ops.

Quick Start

We can import pre-trained FasterViT models with 1 line of code. First, FasterViT can be simply installed by:

pip install fastervit

A pretrained FasterViT model with default hyper-parameters can be created as in the following:

>>> from fastervit import create_model

# Define fastervit-0 model with 224 x 224 resolution

>>> model = create_model('faster_vit_0_224', 
                          pretrained=True,
                          model_path="/tmp/faster_vit_0.pth.tar")

model_path is used to set the directory to download the model.

We can also simply test the model by passing a dummy input image. The output is the logits:

>>> import torch

>>> image = torch.rand(1, 3, 224, 224)
>>> output = model(image) # torch.Size([1, 1000])

We can also use the any-resolution FasterViT model to accommodate arbitrary image resolutions. In the following, we define an any-resolution FasterViT-0 model with input resolution of 576 x 960, window sizes of 12 and 6 in 3rd and 4th stages, carrier token size of 2 and embedding dimension of 64:

>>> from fastervit import create_model

# Define any-resolution FasterViT-0 model with 576 x 960 resolution
>>> model = create_model('faster_vit_0_any_res', 
                          resolution=[576, 960],
                          window_size=[7, 7, 12, 6],
                          ct_size=2,
                          dim=64,
                          pretrained=True)

Note that the above model is intiliazed from the original ImageNet pre-trained FasterViT with original resolution of 224 x 224. As a result, missing keys and mis-matches could be expected since we are addign new layers (e.g. addition of new carrier tokens, etc.)

We can simply test the model by passing a dummy input image. The output is the logits:

>>> import torch

>>> image = torch.rand(1, 3, 576, 960)
>>> output = model(image) # torch.Size([1, 1000])

Results + Pretrained Models

ImageNet-1K

FasterViT ImageNet-1K Pretrained Models

Name Acc@1(%) Acc@5(%) Throughput(Img/Sec) Resolution #Params(M) FLOPs(G) Download
FasterViT-0 82.1 95.9 5802 224x224 31.4 3.3 model
FasterViT-1 83.2 96.5 4188 224x224 53.4 5.3 model
FasterViT-2 84.2 96.8 3161 224x224 75.9 8.7 model
FasterViT-3 84.9 97.2 1780 224x224 159.5 18.2 model
FasterViT-4 85.4 97.3 849 224x224 424.6 36.6 model
FasterViT-5 85.6 97.4 449 224x224 975.5 113.0 model
FasterViT-6 85.8 97.4 352 224x224 1360.0 142.0 model

ImageNet-21K

FasterViT ImageNet-21K Pretrained Models (ImageNet-1K Fine-tuned)

Name Acc@1(%) Acc@5(%) Resolution #Params(M) FLOPs(G) Download
FasterViT-4-21K-224 86.6 97.8 224x224 271.9 40.8 model
FasterViT-4-21K-384 87.6 98.3 384x384 271.9 120.1 model
FasterViT-4-21K-512 87.8 98.4 512x512 271.9 213.5 model
FasterViT-4-21K-768 87.9 98.5 768x768 271.9 480.4 model

Robustness (ImageNet-A - ImageNet-R - ImageNet-V2)

All models use crop_pct=0.875. Results are obtained by running inference on ImageNet-1K pretrained models without finetuning.

Name A-Acc@1(%) A-Acc@5(%) R-Acc@1(%) R-Acc@5(%) V2-Acc@1(%) V2-Acc@5(%)
FasterViT-0 23.9 57.6 45.9 60.4 70.9 90.0
FasterViT-1 31.2 63.3 47.5 61.9 72.6 91.0
FasterViT-2 38.2 68.9 49.6 63.4 73.7 91.6
FasterViT-3 44.2 73.0 51.9 65.6 75.0 92.2
FasterViT-4 49.0 75.4 56.0 69.6 75.7 92.7
FasterViT-5 52.7 77.6 56.9 70.0 76.0 93.0
FasterViT-6 53.7 78.4 57.1 70.1 76.1 93.0

A, R and V2 denote ImageNet-A, ImageNet-R and ImageNet-V2 respectively.

Citation

Please consider citing FasterViT if this repository is useful for your work.

@article{hatamizadeh2023fastervit,
  title={FasterViT: Fast Vision Transformers with Hierarchical Attention},
  author={Hatamizadeh, Ali and Heinrich, Greg and Yin, Hongxu and Tao, Andrew and Alvarez, Jose M and Kautz, Jan and Molchanov, Pavlo},
  journal={arXiv preprint arXiv:2306.06189},
  year={2023}
}

Licenses

Copyright © 2023, NVIDIA Corporation. All rights reserved.

This work is made available under the NVIDIA Source Code License-NC. Click here to view a copy of this license.

For license information regarding the timm repository, please refer to its repository.

For license information regarding the ImageNet dataset, please see the ImageNet official website.

Acknowledgement

This repository is built on top of the timm repository. We thank Ross Wrightman for creating and maintaining this high-quality library.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train ahatamiz/FasterViT