NLLB 600M for Khasi
Usage
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "ahlad/nllb-600M-finetune-en-kha"
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang="vie_Latn")
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
article = "Kata ka dei ka bos ."
inputs = tokenizer(article, return_tensors="pt")
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids("eng_Latn"), max_length=30
)
print(tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0])
Pipeline
This is the preferred method for translating a large number of sentences when used in conjunction with a Hugging Face Dataset.
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
import torch
model_name = "ahlad/nllb-600M-finetune-en-kha"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translator_nllb = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
src_lang="vie_Latn",
tgt_lang="eng_Latn",
max_length=128,
device=0 if torch.cuda.is_available() else -1,
)
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ahlad/nllb-600M-finetune-en-kha
Base model
facebook/nllb-200-distilled-600M