|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: my_awesome_billsum_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# my_awesome_billsum_model |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5680 |
|
- Rouge1: 0.1434 |
|
- Rouge2: 0.0458 |
|
- Rougel: 0.118 |
|
- Rougelsum: 0.1182 |
|
- Gen Len: 20.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 62 | 2.8554 | 0.1344 | 0.04 | 0.113 | 0.1131 | 20.0 | |
|
| No log | 2.0 | 124 | 2.6474 | 0.1374 | 0.0431 | 0.1142 | 0.1142 | 20.0 | |
|
| No log | 3.0 | 186 | 2.5835 | 0.1413 | 0.0449 | 0.1159 | 0.1161 | 20.0 | |
|
| No log | 4.0 | 248 | 2.5680 | 0.1434 | 0.0458 | 0.118 | 0.1182 | 20.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|