ahmed792002's picture
ahmed792002/Finetuning_XLNET_Paraphrase_Classification
4a095df verified
|
raw
history blame
1.6 kB
metadata
library_name: transformers
license: mit
base_model: xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: Finetuning_XLNET_Paraphrase_Classification
    results: []

Finetuning_XLNET_Paraphrase_Classification

This model is a fine-tuned version of xlnet-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3980
  • Accuracy: 0.8603
  • F1: 0.8601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 459 0.3751 0.8260 0.8148
0.5039 2.0 918 0.3980 0.8603 0.8601

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3