ahmed792002's picture
ahmed792002/Finetuning_XLNET_Paraphrase_Classification
b5944da verified
---
library_name: transformers
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: Finetuning_XLNET_Paraphrase_Classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Finetuning_XLNET_Paraphrase_Classification
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9155
- Accuracy: 0.8701
- F1: 0.8671
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5517 | 1.0 | 619 | 0.3508 | 0.8529 | 0.8513 |
| 0.3345 | 2.0 | 1238 | 0.4829 | 0.8725 | 0.8711 |
| 0.2295 | 3.0 | 1857 | 0.9169 | 0.8627 | 0.8585 |
| 0.1313 | 4.0 | 2476 | 0.8408 | 0.8652 | 0.8624 |
| 0.0398 | 5.0 | 3095 | 0.9155 | 0.8701 | 0.8671 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3