|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
model-index: |
|
- name: mistral-sql-create-context-lora |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.3 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: b-mc2/sql-create-context |
|
type: |
|
# JSONL file contains question, context, answer fields per line. |
|
# This gets mapped to instruction, input, output axolotl tags. |
|
field_instruction: question |
|
field_input: context |
|
field_output: answer |
|
# Format is used by axolotl to generate the prompt. |
|
format: |- |
|
[INST] Using the schema context below, generate a SQL query that answers the question. |
|
{input} |
|
{instruction} [/INST] |
|
|
|
tokens: # add new control tokens from the dataset to the model |
|
- "[INST]" |
|
- " [/INST]" |
|
- "[SQL]" |
|
- " [/SQL]" |
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/mistral-sql-create-context-lora |
|
hub_model_id: ahmedsamirio/mistral-sql-create-context-lora |
|
|
|
# This is set to 4096 in the modal config, why? |
|
# Since I'm using sample packing, decreasing the sequence length will create smaller batches |
|
# which can fit better into memory |
|
sequence_len: 8192 |
|
|
|
# These is set to false in the modal example, why? (Modal also uses FSDP which might be a reason) |
|
sample_packing: true |
|
eval_sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral |
|
- embed_tokens |
|
- lm_head |
|
|
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: mistral-sql-create-context |
|
wandb_entity: ahmedsamirio |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 4 |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
# What is this? |
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
|
|
# This wasn't set in modal config |
|
|
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
``` |
|
|
|
</details> |