File size: 11,269 Bytes
362a425 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
import torch.nn as nn
from typing import Optional, Union, Tuple
from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import (
shift_tokens_right,
VisionEncoderDecoderModel
)
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers import PreTrainedModel
from transformers.models.pixtral.modeling_pixtral import apply_rotary_pos_emb, PixtralAttention, PixtralVisionModel
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import BaseModelOutput
from pixtral_encoder_decoder.config import PixtralVisionModelBatchConfig, VisionPixtralEncoderDecoderConfig
def position_ids_in_meshgrid_batch(patch_embeds, max_width):
"""get the position ids of the batch. """
# unlike flattened patch_embeds, we use the padded ones, which mean each entry has the same w/h and thus the same ids
height, width = patch_embeds.shape[-2:]
mesh = torch.meshgrid(torch.arange(height), torch.arange(width), indexing="ij")
h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
ids = h_grid * max_width + v_grid
# expand ids to batch size
ids = ids.reshape(1, -1).repeat(patch_embeds.shape[0], 1)
return ids
def create_attention_mask_batch(w, h, image_sizes, patch_size):
def foo(i, j):
return ((torch.arange(h).unsqueeze(1) < i) & (torch.arange(w).unsqueeze(0) < j)).float()
mask = [foo(size[0] // patch_size, size[1] // patch_size) for size in image_sizes]
return torch.stack(mask, dim=0)
def pixtral_attention_fix_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, patches, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, patches, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
# monkey patch a fix for unsqueeze dim for position embedds (since our input is batched and the old one is not)
PixtralAttention.forward = pixtral_attention_fix_forward
class PixtralVisionModelBatch(PixtralVisionModel):
config_class = PixtralVisionModelBatchConfig
def __init__(self, config):
super().__init__(config)
def forward(
self,
pixel_values: torch.Tensor,
image_sizes: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
*args,
**kwargs,
) -> Union[Tuple, BaseModelOutput]:
"""
Returns:
pixel_values: tensor of token features for
all tokens of all images of shape (N_toks, D)
"""
if attention_mask is None and image_sizes is None:
raise ValueError("Either `attention_mask` or `image_sizes` must be defined")
# pass images through initial convolution independently
patch_embeds = self.patch_conv(pixel_values)
# build attention mask based on image_sizes if not provided
if attention_mask is None:
h, w = patch_embeds.shape[-2:]
attention_mask = create_attention_mask_batch(w, h, image_sizes, self.patch_size).to(patch_embeds.device)
attention_mask = attention_mask.flatten(start_dim=-2)
# positional embeddings
position_ids = position_ids_in_meshgrid_batch(
patch_embeds, max_width=self.config.image_size // self.config.patch_size
)
position_embeddings = self.patch_positional_embedding(patch_embeds, position_ids)
# flatten patch_embeds
# seq_len = (h*w); hidden x seq_len -> seq_len x hidden.
patch_embeds = patch_embeds.flatten(start_dim=-2).transpose(-1, -2)
attention_mask = _prepare_4d_attention_mask(attention_mask, torch.float)
patch_embeds = self.ln_pre(patch_embeds)
out = self.transformer(
patch_embeds,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
return out
class VisionPixtralEncoderDecoder(VisionEncoderDecoderModel):
config_class = VisionPixtralEncoderDecoderConfig
def __init__(self, config,
encoder: Optional[PixtralVisionModelBatch] = None,
decoder: Optional[PreTrainedModel] = None):
super().__init__(config, encoder, decoder)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# num_items_in_batch is only needed for loss computation
num_items_in_batch = kwargs.pop("num_items_in_batch", None)
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
kwargs_decoder = {
argument[len("decoder_"):]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
}
if encoder_outputs is None:
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
if encoder_attention_mask is None and image_sizes is None:
raise ValueError("Either `encoder_attention_mask` or `image_sizes` must be defined")
if encoder_attention_mask is None:
h, w = pixel_values.shape[-2:]
h = h // self.encoder.patch_size # simulate convolution to get num_patches
w = w // self.encoder.patch_size # simulate convolution to get num_patches
encoder_attention_mask = create_attention_mask_batch(w, h, image_sizes, self.encoder.patch_size)
encoder_attention_mask = encoder_attention_mask.to(pixel_values.device)
encoder_attention_mask = encoder_attention_mask.flatten(start_dim=-2)
encoder_outputs = self.encoder(
pixel_values=pixel_values,
image_sizes=image_sizes,
attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs_encoder,
)
elif isinstance(encoder_outputs, tuple):
encoder_outputs = BaseModelOutput(*encoder_outputs)
encoder_hidden_states = encoder_outputs[0]
# optionally project encoder_hidden_states
if (
self.encoder.config.hidden_size != self.decoder.config.hidden_size
and self.decoder.config.cross_attention_hidden_size is None
):
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
# else:
# encoder_attention_mask = None
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
past_key_values=past_key_values,
return_dict=return_dict,
**kwargs_decoder,
)
# Compute loss independent from decoder (as some shift the logits inside them)
loss = None
if labels is not None:
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.decoder.config.vocab_size,
num_items_in_batch=num_items_in_batch,
)
if not return_dict:
if loss is not None:
return (loss,) + decoder_outputs + encoder_outputs
else:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|