File size: 11,269 Bytes
362a425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import torch.nn as nn

from typing import Optional, Union, Tuple

from transformers.models.vision_encoder_decoder.modeling_vision_encoder_decoder import (
    shift_tokens_right,
    VisionEncoderDecoderModel
)
from transformers.modeling_outputs import Seq2SeqLMOutput
from transformers import PreTrainedModel
from transformers.models.pixtral.modeling_pixtral import apply_rotary_pos_emb, PixtralAttention, PixtralVisionModel
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from transformers.modeling_outputs import BaseModelOutput

from pixtral_encoder_decoder.config import PixtralVisionModelBatchConfig, VisionPixtralEncoderDecoderConfig


def position_ids_in_meshgrid_batch(patch_embeds, max_width):
    """get the position ids of the batch. """
    # unlike flattened patch_embeds, we use the padded ones, which mean each entry has the same w/h and thus the same ids
    height, width = patch_embeds.shape[-2:]
    mesh = torch.meshgrid(torch.arange(height), torch.arange(width), indexing="ij")
    h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1)
    ids = h_grid * max_width + v_grid
    # expand ids to batch size
    ids = ids.reshape(1, -1).repeat(patch_embeds.shape[0], 1)
    return ids


def create_attention_mask_batch(w, h, image_sizes, patch_size):
    def foo(i, j):
        return ((torch.arange(h).unsqueeze(1) < i) & (torch.arange(w).unsqueeze(0) < j)).float()

    mask = [foo(size[0] // patch_size, size[1] // patch_size) for size in image_sizes]
    return torch.stack(mask, dim=0)


def pixtral_attention_fix_forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
    """Input shape: Batch x Time x Channel"""

    batch_size, patches, _ = hidden_states.size()

    query_states = self.q_proj(hidden_states)
    key_states = self.k_proj(hidden_states)
    value_states = self.v_proj(hidden_states)

    query_states = query_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
    key_states = key_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)
    value_states = value_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2)

    cos, sin = position_embeddings
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=1)

    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale

    if attention_mask is not None:
        attn_weights = attn_weights + attention_mask

    # upcast attention to fp32
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
    attn_output = torch.matmul(attn_weights, value_states)

    attn_output = attn_output.transpose(1, 2).contiguous()
    attn_output = attn_output.reshape(batch_size, patches, -1)

    attn_output = self.o_proj(attn_output)

    return attn_output, attn_weights


# monkey patch a fix for unsqueeze dim for position embedds (since our input is batched and the old one is not)
PixtralAttention.forward = pixtral_attention_fix_forward


class PixtralVisionModelBatch(PixtralVisionModel):
    config_class = PixtralVisionModelBatchConfig

    def __init__(self, config):
        super().__init__(config)

    def forward(
            self,
            pixel_values: torch.Tensor,
            image_sizes: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            output_hidden_states: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            *args,
            **kwargs,
    ) -> Union[Tuple, BaseModelOutput]:
        """
        Returns:
            pixel_values: tensor of token features for
                all tokens of all images of shape (N_toks, D)
        """
        if attention_mask is None and image_sizes is None:
            raise ValueError("Either `attention_mask` or `image_sizes` must be defined")
        # pass images through initial convolution independently
        patch_embeds = self.patch_conv(pixel_values)
        # build attention mask based on image_sizes if not provided
        if attention_mask is None:
            h, w = patch_embeds.shape[-2:]
            attention_mask = create_attention_mask_batch(w, h, image_sizes, self.patch_size).to(patch_embeds.device)
            attention_mask = attention_mask.flatten(start_dim=-2)

        # positional embeddings
        position_ids = position_ids_in_meshgrid_batch(
            patch_embeds, max_width=self.config.image_size // self.config.patch_size
        )
        position_embeddings = self.patch_positional_embedding(patch_embeds, position_ids)

        # flatten patch_embeds
        # seq_len = (h*w); hidden x seq_len -> seq_len x hidden.
        patch_embeds = patch_embeds.flatten(start_dim=-2).transpose(-1, -2)

        attention_mask = _prepare_4d_attention_mask(attention_mask, torch.float)

        patch_embeds = self.ln_pre(patch_embeds)

        out = self.transformer(
            patch_embeds,
            attention_mask=attention_mask,
            position_embeddings=position_embeddings,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )
        return out


class VisionPixtralEncoderDecoder(VisionEncoderDecoderModel):
    config_class = VisionPixtralEncoderDecoderConfig

    def __init__(self, config,
                 encoder: Optional[PixtralVisionModelBatch] = None,
                 decoder: Optional[PreTrainedModel] = None):
        super().__init__(config, encoder, decoder)

    def forward(
            self,
            pixel_values: Optional[torch.Tensor] = None,
            image_sizes: Optional[torch.Tensor] = None,
            encoder_attention_mask: Optional[torch.Tensor] = None,
            decoder_input_ids: Optional[torch.LongTensor] = None,
            decoder_attention_mask: Optional[torch.BoolTensor] = None,
            encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
            past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
            decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # num_items_in_batch is only needed for loss computation
        num_items_in_batch = kwargs.pop("num_items_in_batch", None)

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_"):]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            if pixel_values is None:
                raise ValueError("You have to specify pixel_values")
            if encoder_attention_mask is None and image_sizes is None:
                raise ValueError("Either `encoder_attention_mask` or `image_sizes` must be defined")
            if encoder_attention_mask is None:
                h, w = pixel_values.shape[-2:]
                h = h // self.encoder.patch_size  # simulate convolution to get num_patches
                w = w // self.encoder.patch_size  # simulate convolution to get num_patches
                encoder_attention_mask = create_attention_mask_batch(w, h, image_sizes, self.encoder.patch_size)
                encoder_attention_mask = encoder_attention_mask.to(pixel_values.device)
                encoder_attention_mask = encoder_attention_mask.flatten(start_dim=-2)

            encoder_outputs = self.encoder(
                pixel_values=pixel_values,
                image_sizes=image_sizes,
                attention_mask=encoder_attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_encoder,
            )
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs[0]

        # optionally project encoder_hidden_states
        if (
                self.encoder.config.hidden_size != self.decoder.config.hidden_size
                and self.decoder.config.cross_attention_hidden_size is None
        ):
            encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

        # else:
        # encoder_attention_mask = None

        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Compute loss independent from decoder (as some shift the logits inside them)
        loss = None
        if labels is not None:
            logits = decoder_outputs.logits if return_dict else decoder_outputs[0]

            loss = self.loss_function(
                logits=logits,
                labels=labels,
                vocab_size=self.decoder.config.vocab_size,
                num_items_in_batch=num_items_in_batch,
            )

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutput(
            loss=loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )