rugpt3small_based_on_gpt2

The model architecture design, pretraining, and evaluation are documented in our preprint: A Family of Pretrained Transformer Language Models for Russian.

The model was pretrained with sequence length 1024 using transformers by the SberDevices team on 80B tokens around 3 epochs. After that, the model was finetuned with the context size of 2048.

Total training time took around one week on 32 GPUs.

Authors

Cite us

@misc{zmitrovich2023family,
      title={A Family of Pretrained Transformer Language Models for Russian}, 
      author={Dmitry Zmitrovich and Alexander Abramov and Andrey Kalmykov and Maria Tikhonova and Ekaterina Taktasheva and Danil Astafurov and Mark Baushenko and Artem Snegirev and Tatiana Shavrina and Sergey Markov and Vladislav Mikhailov and Alena Fenogenova},
      year={2023},
      eprint={2309.10931},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
54,062
Inference API

Model tree for ai-forever/rugpt3small_based_on_gpt2

Finetunes
14 models

Spaces using ai-forever/rugpt3small_based_on_gpt2 32