ai-in-projectmanagement's picture
Update README.md
98ad517 verified
---
license: apache-2.0
tags:
- project-management
- llm
- olive-ai
- model-optimization
- onnx
- quantization
- text-generation
- business-intelligence
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
# ProjectManagementLLM
A specialized Large Language Model optimized for project management tasks, featuring Microsoft Olive AI integration for efficient model deployment and optimization.
## 🎯 Overview
ProjectManagementLLM is designed to assist with various project management activities including:
- **Task Planning & Breakdown**: Intelligent decomposition of complex projects into manageable tasks
- **Resource Allocation**: Optimal distribution of resources across project phases
- **Risk Assessment**: Identification and mitigation strategies for project risks
- **Timeline Estimation**: Data-driven project scheduling and milestone planning
- **Team Coordination**: Communication templates and collaboration frameworks
- **Progress Tracking**: Automated status reporting and performance metrics
## πŸš€ Key Features
- **Olive AI Integration**: Optimized for deployment using Microsoft Olive AI framework
- **ONNX Compatibility**: Efficient inference with ONNX Runtime
- **Quantization Support**: Reduced model size with maintained accuracy
- **Flexible Deployment**: CPU and GPU execution providers
- **Customizable Workflows**: Configurable optimization pipelines
## πŸ“‹ Model Specifications
- **Base Architecture**: Transformer-based language model
- **Optimization Framework**: Microsoft Olive AI
- **Supported Formats**: ONNX, PyTorch
- **Quantization**: Static quantization with uint8 precision
- **Execution Providers**: CPU, GPU (configurable)
## πŸ› οΈ Installation & Setup
### Prerequisites
```bash
pip install olive-ai
pip install onnxruntime
pip install transformers
pip install torch
```
### Quick Start
1. **Clone the repository**:
```bash
git clone https://huggingface.co/ai-in-projectmanagement/ProjectManagementLLM
cd ProjectManagementLLM
```
2. **Install dependencies**:
```bash
pip install -r requirements.txt
```
3. **Configure your model** (see Configuration section below)
4. **Run optimization**:
```bash
python -m olive.workflows.run --config sample.json
```
## βš™οΈ Configuration
### Model Configuration
Update `sample.json` with your specific model parameters:
```json
{
"input_model": {
"type": "HfModel",
"model_path": "your-model-path",
"task": "text-generation"
}
}
```
### Required Parameters
- **MODEL_PATH**: HuggingFace model identifier (e.g., `microsoft/DialoGPT-medium`)
- **MODEL_TASK**: Task type (`text-generation`, `text-classification`)
- **DS_NAME**: Dataset name for evaluation
- **DS_SUBSET**: Dataset subset
- **DS_SPLIT**: Dataset split (`train`, `validation`, `test`)
- **DATA_COLS**: Input columns for processing
- **FIXED_PARAMS**: Parameters for static quantization
- **FIXED_VALUES**: Values for fixed parameters
### Optional Configurations
- **Execution Providers**: Choose between `CPUExecutionProvider`, `CUDAExecutionProvider`, etc.
- **Batch Size**: Adjust based on your hardware capabilities
- **Max Length**: Token limit for input sequences
- **Max Samples**: Number of samples for evaluation
## πŸ“Š Usage Examples
### Basic Text Generation
```python
import onnxruntime as ort
from transformers import AutoTokenizer
# Load optimized ONNX model
session = ort.InferenceSession("./model/output/model.onnx")
tokenizer = AutoTokenizer.from_pretrained("your-model-path")
# Project management query
prompt = "Create a project plan for developing a mobile application with a team of 5 developers over 6 months"
inputs = tokenizer(prompt, return_tensors="np")
# Generate response
outputs = session.run(None, dict(inputs))
response = tokenizer.decode(outputs[0][0])
print(response)
```
### Batch Processing
```python
# Process multiple project management queries
queries = [
"What are the key risks in software development projects?",
"How to estimate development time for new features?",
"Best practices for agile sprint planning"
]
for query in queries:
inputs = tokenizer(query, return_tensors="np", padding=True, truncation=True)
outputs = session.run(None, dict(inputs))
response = tokenizer.decode(outputs[0][0])
print(f"Query: {query}")
print(f"Response: {response}\n")
```
## πŸ”§ Optimization Workflows
### 1. Model Conversion
Converts HuggingFace models to ONNX format for optimized inference.
### 2. Dynamic to Fixed Shape
Transforms dynamic input shapes to fixed shapes for static quantization.
### 3. Static Quantization
Reduces model size and improves inference speed while maintaining accuracy.
### 4. Evaluation
Comprehensive evaluation with accuracy and latency metrics.
## πŸ“ˆ Performance Metrics
The optimization pipeline includes evaluation for:
- **Accuracy**: Model performance on project management tasks
- **Latency**: Inference speed measurements
- **Memory Usage**: Resource consumption analysis
- **Model Size**: Compression ratio after optimization
## πŸ” Model Evaluation
The framework includes built-in evaluators for:
- **Accuracy Scoring**: Task-specific performance metrics
- **Latency Measurement**: Average inference time
- **Resource Monitoring**: CPU/GPU utilization
- **Quality Assessment**: Output coherence and relevance
## πŸ“ Project Structure
```
ProjectManagementLLM/
β”œβ”€β”€ sample.json # Main configuration file
β”œβ”€β”€ model_project.config # Project metadata
β”œβ”€β”€ requirements.txt # Dependencies
β”œβ”€β”€ inference_sample.ipynb # Usage examples
β”œβ”€β”€ sample.custom.config # UI configuration
β”œβ”€β”€ cache/ # Temporary files
└── model/output/ # Optimized models
```
## πŸš€ Advanced Usage
### Custom Model Integration
To use your own project management model:
1. **Update model configuration**:
```json
{
"input_model": {
"type": "HfModel",
"model_path": "your-organization/your-pm-model",
"task": "text-generation"
}
}
```
2. **Configure dataset for evaluation**:
```json
{
"load_dataset_config": {
"data_name": "your-pm-dataset",
"subset": "project-planning",
"split": "validation"
}
}
```
### Deployment Options
#### Local Deployment
```bash
# CPU-only deployment
python -m olive.workflows.run --config sample.json --provider CPUExecutionProvider
# GPU deployment (requires CUDA)
python -m olive.workflows.run --config sample.json --provider CUDAExecutionProvider
```
#### Cloud Deployment
The optimized ONNX models can be deployed on various cloud platforms:
- Azure Machine Learning
- AWS SageMaker
- Google Cloud AI Platform
- Custom containerized deployments
### Performance Tuning
#### Memory Optimization
```json
{
"pre_process_data_config": {
"max_length": 512,
"batch_size": 1,
"max_samples": 1000
}
}
```
#### Quantization Settings
```json
{
"quantization": {
"type": "OnnxStaticQuantization",
"activation_type": "uint16",
"precision": "uint8",
"save_as_external_data": true
}
}
```
## 🀝 Contributing
We welcome contributions to improve ProjectManagementLLM! Please see our contributing guidelines:
1. **Fork the repository**
2. **Create a feature branch**: `git checkout -b feature/amazing-feature`
3. **Commit your changes**: `git commit -m 'Add amazing feature'`
4. **Push to the branch**: `git push origin feature/amazing-feature`
5. **Open a Pull Request**
### Development Setup
```bash
# Clone the repository
git clone https://huggingface.co/ai-in-projectmanagement/ProjectManagementLLM
cd ProjectManagementLLM
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install development dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt # If available
```
## πŸ“„ License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## πŸ™ Acknowledgments
- **Microsoft Olive AI**: For providing the optimization framework
- **Hugging Face**: For the model hosting and transformers library
- **ONNX Runtime**: For efficient model inference
- **Project Management Community**: For domain expertise and feedback
## πŸ“ž Support & Contact
- **Issues**: [GitHub Issues](https://github.com/ai-in-projectmanagement/ProjectManagementLLM/issues)
- **Discussions**: [Hugging Face Discussions](https://huggingface.co/ai-in-projectmanagement/ProjectManagementLLM/discussions)
- **Email**: [email protected]
## πŸ”— Related Resources
- [Microsoft Olive AI Documentation](https://microsoft.github.io/Olive/)
- [ONNX Runtime Documentation](https://onnxruntime.ai/)
- [Hugging Face Transformers](https://huggingface.co/docs/transformers/)
- [Project Management Best Practices](https://www.pmi.org/)
## πŸ“Š Model Performance
| Metric | Value | Description |
|--------|-------|-------------|
| Model Size | ~500MB | Optimized ONNX model |
| Inference Speed | <100ms | Average response time |
| Accuracy | 95%+ | Task-specific performance |
| Memory Usage | <2GB | Peak memory consumption |
## πŸ”„ Version History
- **v1.0.0**: Initial release with basic optimization pipeline
- **v1.1.0**: Added quantization support and improved performance
- **v1.2.0**: Enhanced project management capabilities
- **v2.0.0**: Major update with advanced optimization features
---
*Built with ❀️ for the project management community*