File size: 5,174 Bytes
2531621
6ce07b8
 
 
 
 
 
 
 
 
 
 
 
 
dc7dd47
 
 
6ce07b8
 
2531621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccda873
 
 
6ce07b8
ccda873
 
2531621
ccda873
2531621
ccda873
2531621
 
 
 
 
ccda873
 
 
2531621
 
 
ccda873
6ce07b8
2531621
 
 
 
 
 
 
 
 
 
6ce07b8
2531621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccda873
2531621
ccda873
2531621
 
ccda873
 
 
 
 
 
 
2531621
 
 
 
 
 
 
6ce07b8
2531621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39e4a93
2531621
6ce07b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
license: apache-2.0
datasets:
- kanhatakeyama/wizardlm8x22b-logical-math-coding-sft
base_model:
- unsloth/Llama-3.2-1B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- llm
- maths
- coding
- reasoning
- tech
- unsloth
- trl
- sft
---
 

# LLaMA-3.2-1B-Instruct Fine-Tuned Model

**Model Card for Hugging Face Repository**

---

## Model Summary

This is a fine-tuned version of the **LLaMA-3.2-1B-Instruct** model. Fine-tuned using the `kanhatakeyama/wizardlm8x22b-logical-math-coding-sft` dataset, this model is specialized in **logical reasoning**, **mathematical problem-solving**, and **coding tasks**. Training was performed using **Unsloth** on Google Colab, optimized for performance and usability.

---

## Model Details

- **Model Name**: LLaMA-3.2-1B-Instruct (Fine-tuned)
- **Base Model**: LLaMA-3.2-1B-Instruct
- **Fine-Tuning Dataset**: `kanhatakeyama/wizardlm8x22b-logical-math-coding-sft`
- **Fine-Tuning Framework**: Unsloth
- **Parameters**: 1 Billion
- **Domain**: Logical Reasoning, Mathematics, Coding
- **Tags**: `llama`, `fine-tuning`, `instruction-following`, `math`, `coding`, `logical-reasoning`, `unsloth`

---

## Fine-Tuning Dataset

The fine-tuning dataset, `kanhatakeyama/wizardlm8x22b-logical-math-coding-sft`, is curated for advanced reasoning tasks. It contains:
- Logical reasoning scenarios
- Step-by-step mathematical solutions
- Complex code generation and debugging examples

**Dataset Link**: [kanhatakeyama/wizardlm8x22b-logical-math-coding-sft](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft)

---

## Intended Use

This model is ideal for tasks such as:
1. **Logical Problem Solving**: Derive conclusions and explanations for logical questions.
2. **Mathematics**: Solve algebra, calculus, and other mathematical problems.
3. **Coding**: Generate, debug, and explain programming code in various languages.
4. **Instruction-Following**: Handle user queries with clear and concise answers.

### Example Applications:
- AI tutors
- Logical reasoning assistants
- Math-solving bots
- Code generation and debugging tools

---

## Usage

### Installation

To use this model, install the required dependencies:
```bash
pip install transformers datasets torch accelerate
```

### Loading the Model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
model_name = "ai-nexuz/llama-3.2-1b-instruct-fine-tuned"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
```

### Generating Outputs

```python
prompt = "Solve this equation: 2x + 3 = 7. Find x."

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(response)
```

---

 

## Model Training

### Hardware
- **Platform**: Google Colab Pro
- **GPU**: NVIDIA Tesla T4

### Training Configuration
- **Batch Size**: 32
- **Epochs**: 1
 
### Frameworks Used
- **Unsloth**: For efficient training
- **Hugging Face Transformers**: For model and tokenizer handling

---

## Limitations

While this model is highly proficient in logical reasoning, mathematics, and coding tasks, there are some limitations:
- May produce inaccurate results for ambiguous or poorly-defined prompts.
- Performance may degrade for highly specialized or niche coding languages.

---

## Deployment

### Using Gradio for Web UI

```bash
pip install gradio
```

```python
import gradio as gr

def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=200)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

gr.Interface(fn=generate_response, inputs="text", outputs="text").launch()
```

### Hugging Face Inference API
This model can also be accessed using the Hugging Face Inference API for hosted deployment:
```python
from transformers import pipeline

pipe = pipeline("text-generation", model="ai-nexuz/llama-3.2-1b-instruct-fine-tuned")
result = pipe("Explain the concept of recursion in programming.")
print(result)
```

---

## Acknowledgements

This fine-tuning work was made possible by:
- **Hugging Face** for their exceptional library and dataset hosting.
- **Unsloth** for providing an efficient fine-tuning framework.
- **Google Colab** for GPU resources.

---

## Citation

If you use this model in your research or project, please cite it as:
```
@model{llama31b_instruct_finetuned,
  title={Fine-Tuned LLaMA-3.2-1B-Instruct},
  author={Your Name},
  year={2024},
  url={https://huggingface.co/your-huggingface-repo/llama-3.2-1b-instruct-finetuned},
}
```

---

## Licensing

This model is released under the **Apache 2.0 License**. See `LICENSE` for details.

---

**Tags**:  
`llama` `fine-tuning` `math` `coding` `logical-reasoning` `instruction-following` `transformers`  

**Summary**:  
A fine-tuned version of LLaMA-3.2-1B-Instruct specializing in logical reasoning, math problem-solving, and code generation. Perfect for AI-driven tutoring, programming assistance, and logical problem-solving tasks.