IndicTrans2

This is the model card of IndicTrans2 Indic-En 1.1B variant.

Here are the metrics for the particular checkpoint.

Please refer to Appendix D: Model Card of the preprint for further details on model training, intended use, data, metrics, limitations and recommendations.

Usage Instructions

Please refer to the github repository for a detail description on how to use HF compatible IndicTrans2 models for inference.

import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit import IndicProcessor
# recommended to run this on a gpu with flash_attn installed
# don't set attn_implemetation if you don't have flash_attn
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

src_lang, tgt_lang = "hin_Deva", "eng_Latn"
model_name = "ai4bharat/indictrans2-indic-en-1B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

model = AutoModelForSeq2SeqLM.from_pretrained(
    model_name, 
    trust_remote_code=True, 
    torch_dtype=torch.float16, # performance might slightly vary for bfloat16
    attn_implementation="flash_attention_2"
).to(DEVICE)

ip = IndicProcessor(inference=True)

input_sentences = [
    "जब मैं छोटा था, मैं हर रोज़ पार्क जाता था।",
    "हमने पिछले सप्ताह एक नई फिल्म देखी जो कि बहुत प्रेरणादायक थी।",
    "अगर तुम मुझे उस समय पास मिलते, तो हम बाहर खाना खाने चलते।",
    "मेरे मित्र ने मुझे उसके जन्मदिन की पार्टी में बुलाया है, और मैं उसे एक तोहफा दूंगा।",
]

batch = ip.preprocess_batch(
    input_sentences,
    src_lang=src_lang,
    tgt_lang=tgt_lang,
)

# Tokenize the sentences and generate input encodings
inputs = tokenizer(
    batch,
    truncation=True,
    padding="longest",
    return_tensors="pt",
    return_attention_mask=True,
).to(DEVICE)

# Generate translations using the model
with torch.no_grad():
    generated_tokens = model.generate(
        **inputs,
        use_cache=True,
        min_length=0,
        max_length=256,
        num_beams=5,
        num_return_sequences=1,
    )

# Decode the generated tokens into text
with tokenizer.as_target_tokenizer():
    generated_tokens = tokenizer.batch_decode(
        generated_tokens.detach().cpu().tolist(),
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )

# Postprocess the translations, including entity replacement
translations = ip.postprocess_batch(generated_tokens, lang=tgt_lang)

for input_sentence, translation in zip(input_sentences, translations):
    print(f"{src_lang}: {input_sentence}")
    print(f"{tgt_lang}: {translation}")

📢 Long Context IT2 Models

  • New RoPE based IndicTrans2 models which are capable of handling sequence lengths upto 2048 tokens are available here.
  • These models can be used by just changing the model_name parameter. Please read the model card of the RoPE-IT2 models for more information about the generation.
  • It is recommended to run these models with flash_attention_2 for efficient generation.

Citation

If you consider using our work then please cite using:

@article{gala2023indictrans,
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2023},
url={https://openreview.net/forum?id=vfT4YuzAYA},
note={}
}
Downloads last month
401,340
Safetensors
Model size
1.02B params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Spaces using ai4bharat/indictrans2-indic-en-1B 6

Collection including ai4bharat/indictrans2-indic-en-1B